نتایج جستجو برای: n-jordan homomorphism
تعداد نتایج: 991488 فیلتر نتایج به سال:
Let A and B be Banach algebras and B be a right A-module. In this paper, under special hypotheses we prove that every pseudo (n+1)-Jordan homomorphism f:A----> B is a pseudo n-Jordan homomorphism and every pseudo n-Jordan homomorphism is an n-Jordan homomorphism
Let $nin mathbb{N}$. An additive map $h:Ato B$ between algebras $A$ and $B$ is called $n$-Jordan homomorphism if $h(a^n)=(h(a))^n$ for all $ain A$. We show that every $n$-Jordan homomorphism between commutative Banach algebras is a $n$-ring homomorphism when $n < 8$. For these cases, every involutive $n$-Jordan homomorphism between commutative C-algebras is norm continuous.
In this paper we prove that every n-Jordan homomorphis varphi:mathcal {A} longrightarrowmathcal {B} from unital Banach algebras mathcal {A} into varphi -commutative Banach algebra mathcal {B} satisfiying the condition varphi (x^2)=0 Longrightarrow varphi (x)=0, xin mathcal {A}, is an n-homomorphism. In this paper we prove that every n-Jordan homomorphism varphi:mathcal {A} longrightarrowmathcal...
in this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and also investigate the hyers-ulam-rassiasstability of n-jordan *-homomorphisms on c*-algebras.
let $mathcal {a} $ and $mathcal {b} $ be c$^*$-algebras. assume that $mathcal {a}$ is of real rank zero and unital with unit $i$ and $k>0$ is a real number. it is shown that if $phi:mathcal{a} tomathcal{b}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $phi(|a|^k)=|phi(a)|^k $ for all normal elements $ainmathcal a$, $phi(i)$ is a projection, and there exists a posit...
We prove that a Jordan homomorphism from a Banach algebra into a semisimple commutative Banach algebra is a ring homomorphism. Using a signum effectively, we can give a simple proof of the Hyers-Ulam-Rassias stability of a Jordan homomorphism between Banach algebras. As a direct corollary, we show that to each approximate Jordan homomorphism f from a Banach algebra into a semisimple commutative...
Let A,B be two unital C∗−algebras. We prove that every almost unital almost linear mapping h : A −→ B which satisfies h(3uy + 3yu) = h(3u)h(y) + h(y)h(3u) for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, ..., is a Jordan homomorphism. Also, for a unital C∗−algebra A of real rank zero, every almost unital almost linear continuous mapping h : A −→ B is a Jordan homomorphism when h(3uy + 3yu) = h...
Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a posit...
In the group of (continuous) Jordan automorphisms, with the uniform topology, on a semisimple Banach algebra, we show that the connected component of the identity consists of automorphisms. P. Civin and B. Yood have shown that a Jordan homomorphism (that is, a homomorphism that preserves the product xoy = | (xy+yx)) from a Banach algebra onto a semisimple Banach algebra is continuous provided t...
In this article, it is proved that under some conditions every bijective Jordan triple product homomorphism from generalized matrix algebras onto rings is additive. As a corollary, we obtain that every bijective Jordan triple product homomorphism from Mn(A) (A is not necessarily a prime algebra) onto an arbitrary ring R is additive.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید