نتایج جستجو برای: multiplier convergent series‎

تعداد نتایج: 381580  

2003
CHARLES SWARTZ Charles Swartz

Let X,Y be locally convex spaces and L(X,Y ) the space of continuous linear operators from X into Y . We consider 2 types of multiplier convergent theorems for a series P Tk in L(X,Y ). First, if λ is a scalar sequence space, we say that the series P Tk is λ multiplier convergent for a locally convex topology τ on L(X,Y ) if the series P tkTk is τ convergent for every t = {tk} ∈ λ. We establish...

Journal: :Rocky Mountain Journal of Mathematics 2005

Journal: :Topology and its Applications 2016

Journal: :Časopis pro pěstování matematiky 1988

Journal: :Zeitschrift für Analysis und ihre Anwendungen 1998

‎Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous‎ ‎linear operators from $X$ into $Y$‎. ‎If ${T_{j}}$ is a sequence in $L(X,Y)$,‎ ‎the (bounded) multiplier space for the series $sum T_{j}$ is defined to be‎ [ ‎M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}%‎ ‎T_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...

Journal: :caspian journal of mathematical sciences 2014
c. swartz

‎let $x,y$ be normed spaces with $l(x,y)$ the space of continuous‎ ‎linear operators from $x$ into $y$‎. ‎if ${t_{j}}$ is a sequence in $l(x,y)$,‎ ‎the (bounded) multiplier space for the series $sum t_{j}$ is defined to be‎ [ ‎m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}%‎ ‎t_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associat...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید