a modular $k$-coloring, $kge 2,$ of a graph $g$ without isolated vertices is a coloring of the vertices of $g$ with the elements in $mathbb{z}_k$ having the property that for every two adjacent vertices of $g,$ the sums of the colors of the neighbors are different in $mathbb{z}_k.$ the minimum $k$ for which $g$ has a modular $k-$coloring is the modular chromatic number of $g.$ except for some s...