نتایج جستجو برای: means).
تعداد نتایج: 350089 فیلتر نتایج به سال:
k-means++ is a seeding technique for the k-means method with an expected approximation ratio of O(log k), where k denotes the number of clusters. Examples are known on which the expected approximation ratio of k-means++ is Ω(log k), showing that the upper bound is asymptotically tight. However, it remained open whether k-means++ yields an O(1)-approximation with probability 1/poly(k) or even wi...
رشد روزافزون تجارت الکترونیکی و استقبال مشتریان از این شیوه تجارت سبب ازدیاد حجم اطلاعات و تنوع محصولات و در نتیجه سخت شدن انتخاب برای مشتریان شده است. سیستمهای پیشنهاددهنده در حل این مشکل به کمک بشر آمده اند و در این راستا از شیوه پالایش اطلاعات استفاده می کنند که از جمله آنها روشهای خوشه بندی ترکیبی می باشد. یکی از روشها، ترکیب الگوریتمهای تکاملی با الگوریتمهای خوشه بندی پایه است. در این مقال...
هدف از این تحقیق بررسی و توسعه الگوریتم های خوشه بندی جهت بخش بندی ابر نقاط نا منظم لیزر اسکنرهای هوایی برای بازسازی مدل سه بعدی ساختمان می باشد. روش کلی به کار گرفته شده در این پژوهش بازسازی داده مبنا می باشد. هسته اصلی بازسازی داده مبنا الگوریتم خوشه بندی نقاط لیدار است. در این تحقیق چهار روش مطرح خوشه بندی بررسی، پیاده سازی و ارزیابی شده است. این چهار روش عبارتند از خوشه بندی به روش k-means،...
Due to the progressive growth of the amount of data available in a wide variety of scientific fields, it has become more difficult to manipulate and analyze such information. In spite of its dependency on the initial settings and the large number of distance computations that it can require to converge, the K-means algorithm remains as one of the most popular clustering methods for massive data...
The k-means++ algorithm is the state of the art algorithm to solve k-Means clustering problems as the computed clusterings are O(log k) competitive in expectation. However, its seeding step requires k inherently sequential passes through the full data set making it hard to scale to massive data sets. The standard remedy is to use the k-means‖ algorithm which reduces the number of sequential rou...
چون در اکثر رویدادها علم پزشکی بصورت غیرقطبی و مبهم با علائم فیزیولوژیکی بیان می شوند و این نوع مطالعات عموما مبهم و نادقیق هستند. در نتیجه برای بررسی این مفاهیم براساس نظریه های تئوریهای فازی و الگوریتم های آن که مهمترین آنها خوشه بندی فازی است استفاده می شود و از ویژگیهای مهم الگوریتم خوشه بندی فازی آنست که در ساختار الگوریتم فازی در خوشه بندی از تابع عضویت فازی استفاده می شود و یک فرد ممکن ا...
یکی از محبوب ترین مسائل یادگیری بدون نظارت که اخیرا مطرح شده، خوشه بندی فازی بر پایه روش های هوش جمعی است. در این پژوهش یک روش خوشه بندی فازی بر پایه نسخه اصلاح شده ای از الگوریتم کلونی زنبور عسل مصنوعی معرفی شده است. به این منظور، ایده طول متغیر کروموزوم برای الگوریتم کلونی زنبور عسل مصنوعی به کار برده شده و روش جدیدی به نام الگوریتم کلونی زنبور عسل مصنوعی با طول رشته متغیر معرفی شده است. الگو...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید