نتایج جستجو برای: magnaporthe grisea
تعداد نتایج: 1778 فیلتر نتایج به سال:
1 CBS1 from Magnaporthe grisea is a structural and functional homolog of the 2 cystathionine beta synthase (CBS) gene from Saccharomyces cerevisiae. Our studies 3 indicated that M. grisea can utilize homocysteine and methionine through a CBS4 independent pathway. Results also revealed responses of M. grisea to homocysteine that 5 are reminiscent of human homocystinuria. 6
CBS1 from Magnaporthe grisea is a structural and functional homolog of the cystathionine beta-synthase (CBS) gene from Saccharomyces cerevisiae. Our studies indicated that M. grisea can utilize homocysteine and methionine through a CBS-independent pathway. The results also revealed responses of M. grisea to homocysteine that are reminiscent of human homocystinuria.
Species of Pyricularia (magnaporthe-like sexual morphs) are responsible for major diseases on grasses. Pyricularia oryzae (sexual morph Magnaporthe oryzae) is responsible for the major disease of rice called rice blast disease, and foliar diseases of wheat and millet, while Pyricularia grisea (sexual morph Magnaporthe grisea) is responsible for foliar diseases of Digitaria. Magnaporthe salvinii...
grain yield loss in rice (oryza sativa l.) caused by blast disease, magnaporthe grisea (hebert) barr, is a major concern of rice growers worldwide. blast is considered as the most injurious disease of rice in iran, resulting in severe loss especially to susceptible rice cultivars. in order to assess yield loss caused by blast pathogen and develop an appropriate model, different disease onsets a...
Background: Populations of Magnaporthe, the causal agent of rice blast disease, are pathotypically and genetically diverse and therefore their interaction with different rice cultivars and also antagonistic microorganisms are very complicated. Objectives: The objectives of the present study were to characterize phylogenetic relationships of 114 native Magnaporthe strains, isolated from rice a...
Rice blast, caused by Magnaporthe grisea, is the most important fungal disease of cultivated rice worldwide. We have developed a strategy for creating disease resistance to M. grisea whereby pathogen-induced expression of the afp (antifungal protein) gene from Aspergillus giganteus occurs in transgenic rice plants. Here, we evaluated the activity of the promoters from three maize pathogenesis-r...
A purified preparation of antifungal protein (AFP) from Aspergillus giganteus exhibited potent antifungal activity against the phytopathogenic fungi Magnaporthe grisea and Fusarium moniliforme, as well as the oomycete pathogen Phytophthora infestans. Under conditions of total inhibition of fungal growth, no toxicity of AFP toward rice protoplasts was observed. Additionally, application of AFP o...
Magnaporthe grisea, also identified as rice blast fungus, rotten rice neck, rice seedling blight, oval leaf spot of graminea, blast of rice [1], pitting disease, ryegrass blast, and Johnson spot is a plant-pathogenic fungus that causes a serious disease affecting rice [2]. Rice blast, caused by Magnaporthe grisea, is considered the most important disease of rice worldwide [3] because of its ext...
We have identified a family of dispersed repetitive DNA sequences in the genome of Magnaporthe grisea, the fungus that causes rice blast disease. We have named this family of DNA sequences "MGR" for M. grisea repeat. Analysis of five MGR clones demonstrates that MGR sequences are highly polymorphic. The segregation of MGR sequences in genetic crosses and hybridization of MGR probes to separated...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید