نتایج جستجو برای: mθ
تعداد نتایج: 52 فیلتر نتایج به سال:
LetM be a compact spin manifold with a smooth action of the ntorus. Connes and Landi constructed θ-deformations Mθ of M , parameterized by n×n real skew-symmetric matrices θ. TheMθ’s together with the canonical Dirac operator (D,H) on M are an isospectral deformation of M . The Dirac operator D defines a Lipschitz seminorm on C(Mθ), which defines a metric on the state space of C(Mθ). We show th...
Let M be a compact spin manifold with a smooth action of the ntorus. Connes and Landi constructed θ-deformations Mθ of M , parameterized by n × n skew-symmetric matrices θ. The Mθ’s together with the canonical Dirac operator (D,H) on M are an isospectral deformation of M . The Dirac operator D defines a Lipschitz seminorm on C(Mθ), which defines a metric on the state space of C(Mθ). We show tha...
In this article we prove the problem on isometric mappings of S posed by Th. M. Rassias. We prove that any map f : S → S, p ≥ n > 1, preserving two angles θ and mθ (mθ < π, m > 1) is an isometry. With the assumption of continuity we prove that any map f : S → S preserving an irrational angle is an isometry.
For a finite subgroup G ⊂ SL(3,C), Bridgeland, King and Reid proved that the moduli space of G-clusters is a crepant resolution of the quotient C/G. This paper considers the moduli spaces Mθ, introduced by Kronheimer and further studied by Sardo Infirri, which coincide with G -Hilb for a particular choice of GIT parameter θ. For G Abelian, we prove that every projective crepant resolution of C/...
For a finite subgroup G ⊂ SL(3,C), Bridgeland, King and Reid proved that the moduli space of G-clusters is a crepant resolution of the quotient C3/G. This paper considers the moduli spaces Mθ, introduced by Kronheimer and further studied by Sardo Infirri, which coincide with G -Hilb for a particular choice of GIT parameter θ. For G Abelian, we prove that every projective crepant resolution of C...
Let M be a separable compact Hausdorff space with dim M ≤ 2 and θ : M → M be a homeomorphism with prime period p (p ≥ 2). Set Mθ = {x ∈ M | θ(x) = x} 6= ∅ and M0 = M\Mθ. Suppose that M0 is dense in M and H(M0/θ,Z) ∼= 0, H(χ(M0/θ),Z) ∼= 0. Let M ′ be another separable compact Hausdorff space with dim M ′ ≤ 2 and θ′ be the self–homeomorphism of M ′ with prime period p. Suppose that M ′ 0 = M ′\M ...
Let H m be the reproducing kernel Hilbert space with the kernel function (z, w) ∈ B×B → (1− m ∑ i=1 ziw̄i) . We show that if θ : B → L(E , E∗) is a multiplier for which the corresponding multiplication operator Mθ ∈ L(H m ⊗ E , H 2 m ⊗ E∗) has closed range, then the quotient module Hθ, given by · · · −→ H m ⊗ E Mθ −→ H m ⊗ E∗ πθ −→ Hθ −→ 0, is similar to H m ⊗F for some Hilbert space F if and on...
Divergence functions are the non-symmetric “distance” on the manifold,Mθ, of parametric probability density functions over a measure space, (X,μ). Classical information geometry prescribes, on Mθ: (i) a Riemannian metric given by the Fisher information; (ii) a pair of dual connections (giving rise to the family of α-connections) that preserve the metric under parallel transport by their joint a...
where both m(·) and σ(·) are unknown functions defined over R, the data {(Xt, Yt)}t=1 are weakly dependent stationary time series, and et is an error process with zero mean and unit variance. Suppose that {mθ(·)|θ ∈ Θ} is a family of parametric specification to the regression function m(x) where θ ∈ R is an unknown parameter belonging to a parameter space Θ. This paper considers testing the val...
Classical information geometry prescribes, on the parametric family of probability functions Mθ : (i) a Riemannian metric given by the Fisher information; (ii) a pair of dual connections (giving rise to the family of α-connections) that preserve the metric under parallel transport by their joint actions; and (iii) a family of (non-symmetric) divergence functions (α-divergence) defined on Mθ ×Mθ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید