نتایج جستجو برای: locating-chromatic number
تعداد نتایج: 1185149 فیلتر نتایج به سال:
در این پایان نامه دو مقاله زیر بررسی شده اند، که اولی در مورد رنگ آمیزی موقعیت یاب و عدد رنگی موقعیت یاب گراف ها است و دیگری همه ی درخت های با عدد رنگی موقعیت یابی 3 را مشخص می کند. همچنین در این پایان نامه عدد رنگی موقعیت یاب گراف های مسیر، دور، کامل، دوبخشی، ستاره ها، درخت های دو ستاره و کاترپیلارها را مشخص می کند.
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
let $f$ be a proper $k$-coloring of a connected graph $g$ and $pi=(v_1,v_2,ldots,v_k)$ be an ordered partition of $v(g)$ into the resulting color classes. for a vertex $v$ of $g$, the color code of $v$ with respect to $pi$ is defined to be the ordered $k$-tuple $c_{{}_pi}(v)=(d(v,v_1),d(v,v_2),ldots,d(v,v_k))$, where $d(v,v_i)=min{d(v,x):~xin v_i}, 1leq ileq k$. if distinct...
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
The locating-chromatic number of a graph combines two concepts, namely coloring vertices and partition dimension graph. is the smallest k such that G has locating k-coloring, denoted by χL(G). This article proposes procedure for obtaining an origami its subdivision (one vertex on outer edge) through theorems with proofs.
Let c be a proper k-coloring of a connected graph G. Let Π = {S1, S2, . . . , Sk} be the induced partition of V (G) by c, where Si is the partition class having all vertices with color i. The color code cΠ(v) of vertex v is the ordered k-tuple (d(v, S1), d(v, S2), . . . , d(v, Sk)), where d(v, Si) = min{d(v, x)|x ∈ Si}, for 1 ≤ i ≤ k. If all vertices of G have distinct color codes, then c is ca...
The paper generalizes the notion of locating-chromatic number of a graph such that it can be applied to disconnected graphs as well. In this sense, not all the graphs will have finite locating-chromatic numbers. We derive conditions under which a graph has a finite locating-chromatic number. In particular, we determine the locatingchromatic number of a uniform linear forest, namely a disjoint u...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید