نتایج جستجو برای: k primary submodule
تعداد نتایج: 1004536 فیلتر نتایج به سال:
let r be a commutative ring and m be an r-module. we say that m is fully primary, if every proper submodule of m is primary. in this paper, we state some characterizations of fully primary modules. we also give some characterizations of rings over which every module is fully primary, and of those rings over which there exists a faithful fully primary module. furthermore, we will introduce some ...
Let R be a commutative ring and M be an R-module. We say that M is fully primary, if every proper submodule of M is primary. In this paper, we state some characterizations of fully primary modules. We also give some characterizations of rings over which every module is fully primary, and of those rings over which there exists a faithful fully primary module. Furthermore, we will introduce some ...
In this work, we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules. Let $R$ be a commutative ring with identity. We say that a non-zero submodule $N$ of an $R$-module $M$ is a emph{classical 2-absorbing secondary submodule} of $M$ ...
let $r$ be a domain with quotiont field $k$, and let $n$ be a submodule of an $r$-module $m$. we say that $n$ is powerful (strongly primary) if $x,yin k$ and $xymsubseteq n$, then $xin r$ or $yin r$ ($xmsubseteq n$ or $y^nmsubseteq n$ for some $ngeq1$). we show that a submodule with either of these properties is comparable to every prime submodule of $m$, also we show tha...
primary-like and weakly primary-like submodules are two new generalizations of primary ideals from rings to modules. in fact, the class of primary-like submodules of a module lie between primary submodules and weakly primary-like submodules properly. in this note, we show that these three classes coincide when their elements are submodules of a multiplication module and satisfy the primeful pr...
Let $R$ be a domain with quotiont field $K$, and let $N$ be a submodule of an $R$-module $M$. We say that $N$ is powerful (strongly primary) if $x,yin K$ and $xyMsubseteq N$, then $xin R$ or $yin R$ ($xMsubseteq N$ or $y^nMsubseteq N$ for some $ngeq1$). We show that a submodule with either of these properties is comparable to every prime submodule of $M$, also we show tha...
All rings are commutative with 1 6= 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a, b ∈ R and m ∈M and abm ∈ N , then am ∈M -rad(N) or bm ∈M -rad(N) or ...
The cardinality of the minimal generating set of a module M i.e g(M) plays a very important role in the study of QTAG-Modules. Fuchs [1] mentioned the importance of upper and lower basic subgroups of primary groups. A need was felt to generalize these concepts for modules. An upper basic submodule B of a QTAG-Module M reveals much more information about the structure of M . We find that each ba...
in this paper we investigate decompositions of submodules in modules over a proufer domain into intersections of quasi-primary and classical quasi-primary submodules. in particular, existence and uniqueness of quasi-primary decompositions in modules over a proufer domain of finite character are proved. proufer domain; primary submodule; quasi-primary submodule; classical quasi-primary; decomposi...
let $m_r$ be a module with $s=end(m_r)$. we call a submodule $k$ of $m_r$ annihilator-small if $k+t=m$, $t$ a submodule of $m_r$, implies that $ell_s(t)=0$, where $ell_s$ indicates the left annihilator of $t$ over $s$. the sum $a_r(m)$ of all such submodules of $m_r$ contains the jacobson radical $rad(m)$ and the left singular submodule $z_s(m)$. if $m_r$ is cyclic, then $a_r(m)$ is the unique ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید