نتایج جستجو برای: index set
تعداد نتایج: 1032892 فیلتر نتایج به سال:
in this thesis, first the notion of weak mutual associativity (w.m.a.) and the necessary and sufficient condition for a $(l,gamma)$-associated hypersemigroup $(h, ast)$ derived from some family of $lesssim$-preordered semigroups to be a hypergroup, are given. second, by proving the fact that the concrete categories, semihypergroups and hypergroups have not free objects we will introduce t...
let $g=(v,e)$ be a connected simple graph. a labeling $f:v to z_2$ induces two edge labelings $f^+, f^*: e to z_2$ defined by $f^+(xy) = f(x)+f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy in e$. for $i in z_2$, let $v_f(i) = |f^{-1}(i)|$, $e_{f^+}(i) = |(f^{+})^{-1}(i)|$ and $e_{f^*}(i) = |(f^*)^{-1}(i)|$. a labeling $f$ is called friendly if $|v_f(1)-v_f(0)| le 1$. for a friendly labeling $f$ of...
let $a$ be a non-trivial abelian group and $a^{*}=asetminus {0}$. a graph $g$ is said to be $a$-magic graph if there exists a labeling$l:e(g)rightarrow a^{*}$ such that the induced vertex labeling$l^{+}:v(g)rightarrow a$, define by $$l^+(v)=sum_{uvin e(g)} l(uv)$$ is a constant map.the set of all constant integerssuch that $sum_{uin n(v)} l(uv)=c$, for each $vin n(v)$,where $n(v)$ denotes the s...
This paper introduces Index-Set Splitting (ISS), a technique that splits a loop containing several conditional statements into several loops with less complex control flow. Contrary to the classic loop unswitching technique, ISS splits loops when the conditional is loop variant. ISS uses an Index Sub-range Tree (IST) to identify the structure of the conditionals in the loop and to select which ...
let z2 = {0, 1} and g = (v ,e) be a graph. a labeling f : v → z2 induces an edge labeling f* : e →z2 defined by f*(uv) = f(u).f (v). for i ε z2 let vf (i) = v(i) = card{v ε v : f(v) = i} and ef (i) = e(i) = {e ε e : f*(e) = i}. a labeling f is said to be vertex-friendly if | v(0) − v(1) |≤ 1. the vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. in this paper ...
Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید