نتایج جستجو برای: generalized di erentiability

تعداد نتایج: 419881  

Journal: :journal of linear and topological algebra (jlta) 0
l jamshidi department of mathematics, hamedan branch, islamic azad university, hamedan, iran. t allahviranloo department of mathematics, tehran science and research branch, islamic azad university, tehran , iran.

in this paper, we study rst order linear fuzzy di erential equations with fuzzy coecient and initial value. we use the generalized di erentiability concept and apply the exponent matrix to present the general form of their solutions. finally, one example is given to illustrate our results.

Journal: :Math. Oper. Res. 2011
C. H. Jeffrey Pang

We propose a new concept of generalized di erentiation of setvalued maps that captures rst order information. This concept encompasses the standard notions of Fréchet di erentiability, strict di erentiability, calmness and Lipschitz continuity in single-valued maps, and the Aubin property and Lipschitz continuity in set-valued maps. We present calculus rules, sharpen the relationship between th...

Journal: :Fuzzy Sets and Systems 2013
Barnabás Bede Luciano Stefanini

In the present paper, using novel generalizations of the Hukuhara di¤erence for fuzzy sets, we introduce and study new generalized di¤erentiability concepts for fuzzy valued functions. Several properties of the new concepts are investigated and they are compared to similar fuzzy di¤erentiabilities …nding connections between them. Characterization and relatively simple expressions are provided f...

Journal: :نظریه تقریب و کاربرد های آن 0
ش. صدیق بهزادی department of mathematics, islamic azad university, qazvin branch, qazvin, iran

in this paper, a fuzzy hunter-saxton equation is solved by using the adomian'sdecomposition method (adm) and homotopy analysis method (ham). theapproximation solution of this equation is calculated in the form of series whichits components are computed by applying a recursive relation. the existenceand uniqueness of the solution and the convergence of the proposed methodsare proved. a nume...

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

2014
Peter Mathé

Fundamental Theorem of Analysis Theorem 1. Suppose that f ∈ H(0, 1). Then there exists a g ∈ L2(0, 1) such that f(x)− f(0) = ∫ x 0 g(t) dt, 0 < x < 1. We de ne the linear mapping (Sg)(x) := ∫ x 0 g(t) dt. Corollary 1. If f ∈ H(0, 1) then f − f(0) ∈ R(S). Thus, smoothness means that f is in the range of a smoothing operator. Theorem 2. Suppose that f ∈ H(0, 1) (periodic). For the Fourier coe cie...

Journal: :Fuzzy Sets and Systems 2000
Shiji Song Congxin Wu

We studied the Cauchy problem of fuzzy di erential equations on the basis of introducing the concept of di erentiation which is a generalization of the de nition of H-di erentiability due to Puri and Ralescu (1983), for fuzzy set-valued mappings of real variables whose values are in the fuzzy number space (E; D). The existence and uniqueness theorem is obtained for the Cauchy problem x′=f(t; x)...

2009
Juan Dubra Juan Dubray

I introduce a property of player’s valuations that ensures the existence of an ex post e¢ cient equilibrium in asymmetric English auctions. The use of this property has the advantage of yielding an ex post e¢ cient equilibrium without assuming di¤erentiability of valuations or that signals are drawn from a density. These technical, non economic, assumptions have been ubiquitous in the study of ...

1997
W. RING

In this paper we study the regularity of the solution of an elliptic partial di erential equation with discontinuous coe cients. This result is used to establish the continuous Fr echet di erentiability of a shape functional arising in the optimal shape design of an electromagnet.

1998
Darinka Dentcheva

We consider multifunctions acting between two linear normed spaces and having closed convex images. Approximations are considered which serve as an expansion of it. Generalized delta theorems for random sets in in nite dimensions are shown using those approximations. Furthermore, univalued, resp. Castaing representations of the multifunction are constructed with (higher order) di erentiability ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->