نتایج جستجو برای: generalized Jordan left derivation

تعداد نتایج: 498927  

Journal: :bulletin of the iranian mathematical society 0
nader mohammad ghosseiri academic member of university of kurdistan

abstract. let r be a 2-torsion free ring with identity. in this paper, first we prove that any jordan left derivation (hence, any left derivation) on the full matrix ringmn(r) (n  2) is identically zero, and any generalized left derivation on this ring is a right centralizer. next, we show that if r is also a prime ring and n  1, then any jordan left derivation on the ring tn(r) of all n×n up...

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

‎Let $mathcal{A}$ be a unital Banach algebra‎, ‎$mathcal{M}$ be a left $mathcal{A}$-module‎, ‎and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$‎. ‎We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$‎, ‎then the following four conditions are equivalent‎: ‎(i) $delta$ is a Jordan left de...

begin{abstract} If $F,D:Rto R$ are additive mappings which satisfy $F(x^{n}y^{n})=x^nF(y^{n})+y^nD(x^{n})$ for all $x,yin R$. Then, $F$ is a generalized left derivation with associated Jordan left derivation $D$ on $R$. Similar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems. end{abstract}

Journal: :bulletin of the iranian mathematical society 0
y. ding department of mathematics‎, ‎east china university of science and technology‎, ‎shanghai‎, ‎china. y. mao department of mathematics‎, ‎qinghai normal university‎, ‎xining‎, ‎qinghai 810008‎, ‎china.

‎let $mathcal{a}$ be a unital banach algebra‎, ‎$mathcal{m}$ be a left $mathcal{a}$-module‎, ‎and $w$ in $mathcal{z}(mathcal{a})$ be a left separating point of $mathcal{m}$‎. ‎we show that if $mathcal{m}$ is a unital left $mathcal{a}$-module and $delta$ is a linear mapping from $mathcal{a}$ into $mathcal{m}$‎, ‎then the following four conditions are equivalent‎: ‎(i) $delta$ is a jordan left de...

Journal: :bulletin of the iranian mathematical society 2011
s. chakraborty a. c. paul

2012

In the present paper we study generalized left derivations on Lie ideals of rings with involution. Some of our results extend other ones proven previously just for the action of generalized left derivations on the whole ring. Furthermore, we prove that every generalized Jordan left derivation on a 2-torsion free ∗-prime ring with involution is a generalized left derivation.

Journal: :bulletin of the iranian mathematical society 2012
mohammad ashraf shakir ali nadeem ur rehman muzibur rahman mozumder

let $r$ be a 2-torsion free ring and $u$ be a square closed lie ideal of $r$. suppose that $alpha, beta$ are automorphisms of $r$. an additive mapping $delta: r longrightarrow r$ is said to be a jordan left $(alpha,beta)$-derivation of $r$ if $delta(x^2)=alpha(x)delta(x)+beta(x)delta(x)$ holds for all $xin r$. in this paper it is established that if $r$ admits an additive mapping $g : rlongrigh...

2017
Guangyu An Jiankui Li GUANGYU AN JIANKUI LI

Let A be a unital algebra and M be a unital A-bimodule. A characterization of generalized derivations and generalized Jordan derivations from A into M, through zero products or zero Jordan products, is given. Suppose that M is a unital left A-module. It is investigated when a linear mapping from A into M is a Jordan left derivation under certain conditions. It is also studied whether an algebra...

A. Ebadian, M. Eshaghi Gordji,

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید