نتایج جستجو برای: generalized Hyers-Ulam stability
تعداد نتایج: 461475 فیلتر نتایج به سال:
In this paper we present four types of Ulam stability for ordinary differential equations: Ulam-Hyers stability, generalized UlamHyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-HyersRassias stability. Some examples and counterexamples are given.
In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional differential equations with non-instantaneous integral impulses and nonlinear integral boundary condition. We also establish certain conditions fo...
In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations ∆n(p, c)φ(x) = h(x), which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional...
In 1940 S.M. Ulam proposed the famous Ulam stability problem. In 1941 D.H. Hyers solved the well-known Ulam stability problem for additive mappings subject to the Hyers condition on approximately additive mappings. In this paper we introduce generalized additive mappings of Jensen type mappings and establish new theorems about the Ulam stability of additive and alternative additive mappings.
in this paper, we prove the generalized hyers-ulam(or hyers-ulam-rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.
for some positive constant ε depending only on δ. Sometimes we call f a δ-approximate solution of (1.1) and g ε-close to f . Such an idea of stability was given by Ulam [13] for Cauchy equation f(x+y) = f(x)+f(y) and his problem was solved by Hyers [4]. Later, the Hyers-Ulam stability was studied extensively (see, e.g., [6, 8, 10, 11]). Moreover, such a concept is also generalized in [2, 3, 12]...
The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theoremwas generalized byAoki 3 for additive mappings and by Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias 4 has pr...
using the hyers-ulam-rassias stability method, weinvestigate isomorphisms in banach algebras and derivations onbanach algebras associated with the following generalized additivefunctional inequalitybegin{eqnarray}|af(x)+bf(y)+cf(z)| le |f(alpha x+ beta y+gamma z)| .end{eqnarray}moreover, we prove the hyers-ulam-rassias stability of homomorphismsin banach algebras and of derivations on banach ...
In this paper, we prove the generalized Hyers-Ulam(or Hyers-Ulam-Rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.
in this paper, we prove the generalized hyers-ulam(or hyers-ulam-rassias ) stability of the following composite functional equation f(f(x)-f(y))=f(x+y)+f(x-y)-f(x)-f(y) in various normed spaces.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید