نتایج جستجو برای: friendly labeling‎

تعداد نتایج: 100296  

Journal: :transactions on combinatorics 2016
wai chee shiu

let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-f...

Journal: :transactions on combinatorics 2012
wai chee shiu kwong harris

let $g=(v,e)$ be a connected simple graph. a labeling $f:v to z_2$ induces two edge labelings $f^+, f^*: e to z_2$ defined by $f^+(xy) = f(x)+f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy in e$. for $i in z_2$, let $v_f(i) = |f^{-1}(i)|$, $e_{f^+}(i) = |(f^{+})^{-1}(i)|$ and $e_{f^*}(i) = |(f^*)^{-1}(i)|$. a labeling $f$ is called friendly if $|v_f(1)-v_f(0)| le 1$. for a friendly labeling $f$ of...

Journal: :transactions on combinatorics 0
wai chee shiu hong kong baptist university

‎‎let $g=(v,e)$ be a simple graph‎. ‎an edge labeling $f:eto {0,1}$ induces a vertex labeling $f^+:vtoz_2$ defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$‎, ‎where $z_2={0,1}$ is the additive group of order 2‎. ‎for $iin{0,1}$‎, ‎let‎ ‎$e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$‎. ‎a labeling $f$ is called edge-friendly if‎ ‎$|e_f(1)-e_f(0)|le 1$‎. ‎$i_f(g)=v_f(...

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

Journal: :bulletin of the iranian mathematical society 2013
ch. adiga c. k. subbaraya a. s. shrikanth m. a. sriraj

let z2 = {0, 1} and g = (v ,e) be a graph. a labeling f : v → z2 induces an edge labeling f* : e →z2 defined by f*(uv) = f(u).f (v). for i ε z2 let vf (i) = v(i) = card{v ε v : f(v) = i} and ef (i) = e(i) = {e ε e : f*(e) = i}. a labeling f is said to be vertex-friendly if | v(0) − v(1) |≤ 1. the vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. in this paper ...

Let Z2 = {0, 1} and G = (V ,E) be a graph. A labeling f : V → Z2 induces an edge labeling f* : E →Z2 defined by f*(uv) = f(u).f (v). For i ε Z2 let vf (i) = v(i) = card{v ε V : f(v) = i} and ef (i) = e(i) = {e ε E : f*(e) = i}. A labeling f is said to be Vertex-friendly if | v(0) − v(1) |≤ 1. The vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. In this paper ...

Journal: :Australasian J. Combinatorics 2012
Wai Chee Shiu Fook Sun Wong

Let G = (V,E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f : E → Z2 defined by f(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)| and ef(i) = |(f+)−1(i)|. A labeling f is called friendly if |vf (1) − vf(0)| ≤ 1. For a friendly labeling f of a graph G, we define the friendly index of G under f by if(G) = ef (1) − ef(0). The set {if(G) | f is a...

2014
Ebrahim Salehi Denrick Bayot

For a graph G = (V,E) and a binary labeling (coloring) f : V (G) → Z2, let vf (i) = |f−1(i)|. f is said to be friendly if |vf (1) − vf (0)| ≤ 1. The labeling f : V (G) → Z2 induces an edge labeling f∗ : E(G) → Z2 defined by f∗(xy) = |f(x)− f(y)| ∀xy ∈ E(G). Let ef (i) = |f∗−1(i)|. The friendly index set of the graph G, denoted by FI(G), is defined by FI(G) = {|ef (1)− ef (0)| : f is a friendly ...

2017
WAI CHEE SHIU Tommy R. Jensen W. C. Shiu

Let G = (V,E) be a simple graph. An edge labeling f : E → {0, 1} induces a vertex labeling f : V → Z2 defined by f(v) ≡ ∑ uv∈E f(uv) (mod 2) for each v ∈ V , where Z2 = {0, 1} is the additive group of order 2. For i ∈ {0, 1}, let ef (i) = |f−1(i)| and vf (i) = |(f+)−1(i)|. A labeling f is called edge-friendly if |ef (1) − ef (0)| ≤ 1. If (G) = vf (1) − vf (0) is called the edge-friendly index o...

Journal: :Ars Comb. 2009
Ebrahim Salehi Shipra De

For a graph G = (V,E) and a binary labeling f : V (G) → Z2, let vf (i) = |f−1(i)|. The labling f is said to be friendly if |vf (1)−vf (0)| ≤ 1. Any vertex labeling f : V (G) → Z2 induces an edge labeling f∗ : E(G) → Z2 defined by f∗(xy) = |f(x)− f(y)|. Let ef (i) = |f∗−1(i)|. The friendly index set of the graph G, denoted by FI(G), is defined by FI(G) = {|ef (1)− ef (0)| : f is a friendly verte...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید