نتایج جستجو برای: friendly index
تعداد نتایج: 437693 فیلتر نتایج به سال:
let $g=(v,e)$ be a connected simple graph. a labeling $f:v to z_2$ induces two edge labelings $f^+, f^*: e to z_2$ defined by $f^+(xy) = f(x)+f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy in e$. for $i in z_2$, let $v_f(i) = |f^{-1}(i)|$, $e_{f^+}(i) = |(f^{+})^{-1}(i)|$ and $e_{f^*}(i) = |(f^*)^{-1}(i)|$. a labeling $f$ is called friendly if $|v_f(1)-v_f(0)| le 1$. for a friendly labeling $f$ of...
let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-f...
let $g=(v,e)$ be a simple graph. an edge labeling $f:eto {0,1}$ induces a vertex labeling $f^+:vtoz_2$ defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where $z_2={0,1}$ is the additive group of order 2. for $iin{0,1}$, let $e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$. a labeling $f$ is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. $i_f(g)=v_f(...
let z2 = {0, 1} and g = (v ,e) be a graph. a labeling f : v → z2 induces an edge labeling f* : e →z2 defined by f*(uv) = f(u).f (v). for i ε z2 let vf (i) = v(i) = card{v ε v : f(v) = i} and ef (i) = e(i) = {e ε e : f*(e) = i}. a labeling f is said to be vertex-friendly if | v(0) − v(1) |≤ 1. the vertex balance index set is defined by {| ef (0) − ef (1) | : f is vertex-friendly}. in this paper ...
We show that, by combining an existing compression boosting technique with the wavelet tree data structure, we are able to design a variant of the FM-index which scales well with the size of the input alphabet Σ. The size of the new index built on a string T [1, n] is bounded by nHk(T )+O ( (n log log n)/ log|Σ| n ) bits, where Hk(T ) is the k-th order empirical entropy of T . The above bound h...
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
For a graph G = (V,E) and a binary labeling f : V (G) → Z2, let vf (i) = |f−1(i)|. The labling f is said to be friendly if |vf (1)−vf (0)| ≤ 1. Any vertex labeling f : V (G) → Z2 induces an edge labeling f∗ : E(G) → Z2 defined by f∗(xy) = |f(x)− f(y)|. Let ef (i) = |f∗−1(i)|. The friendly index set of the graph G, denoted by FI(G), is defined by FI(G) = {|ef (1)− ef (0)| : f is a friendly verte...
Let G = (V,E) be a connected simple graph. A labeling f : V → Z2 induces an edge labeling f : E → Z2 defined by f(xy) = f(x) + f(y) for each xy ∈ E. For i ∈ Z2, let vf (i) = |f−1(i)| and ef(i) = |(f+)−1(i)|. A labeling f is called friendly if |vf (1) − vf(0)| ≤ 1. For a friendly labeling f of a graph G, we define the friendly index of G under f by if(G) = ef (1) − ef(0). The set {if(G) | f is a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید