نتایج جستجو برای: finite p-groups

تعداد نتایج: 2002713  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1375

this thesis basically deals with the well-known notion of the bear-invariant of groups, which is the generalization of the schur multiplier of groups. in chapter two, section 2.1, we present an explicit formula for the bear-invariant of a direct product of cyclic groups with respect to nc, c>1. also in section 2.2, we caculate the baer-invatiant of a nilpotent product of cyclic groups wuth resp...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1377

chapter one is devotod to collect some notion and background informations, which are needed in the next chapters. it also contains some important statements which will be proved in a more general context later in this thesis. in chapter two, we show that if the marginal factor-group is of order np1...pk,n>1, then we obtain a bound for the order of the verbal subgroup. also a bound for the bear-...

Journal: :bulletin of the iranian mathematical society 2011
k. mehrabadi a. iranmanesh

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم 1391

a note on character kernels in finite groups of prime power orde

Journal: :Journal of Algebra 2015

Journal: :Journal of Pure and Applied Algebra 2015

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

Journal: :bulletin of the iranian mathematical society 2014
s. fouladi

let $g$ be a finite group‎. ‎a subset $x$ of $g$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $x$ do not commute‎. ‎in this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

Journal: :international journal of group theory 2012
fahimeh mohammadzadeh azam hokmabadi behrooz mashayekhy

‎let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with‎ ‎$|n|=p^n$ and $|g/n|=p^m$‎. ‎a result of ellis (1998) shows‎ ‎that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded‎ ‎by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $‎ ‎p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$‎. ‎recently‎, ‎the authors have characterized...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید