نتایج جستجو برای: embedded subgroup
تعداد نتایج: 194379 فیلتر نتایج به سال:
suppose that $h$ is a subgroup of $g$, then $h$ is said to be $s$-permutable in $g$, if $h$ permutes with every sylow subgroup of $g$. if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|, |h|)=1$), then $h$ is called an $s$-semipermutable subgroup of $g$. in this paper, we say that $h$ is partially $s$-embedded in $g$ if $g$ has a normal subgroup $t$ such that $ht...
suppose that $h$ is a subgroup of $g$, then $h$ is said to be $s$-permutable in $g$, if $h$ permutes with every sylow subgroup of $g$. if $hp=ph$ hold for every sylow subgroup $p$ of $g$ with $(|p|, |h|)=1$), then $h$ is called an $s$-semipermutable subgroup of $g$. in this paper, we say that $h$ is partially $s$-embedded in $g$ if $g$ has a normal subgroup $t$ such that $ht...
we call $h$ an $ss$-embedded subgroup of $g$ if there exists a normal subgroup $t$ of $g$ such that $ht$ is subnormal in $g$ and $hcap tleq h_{sg}$, where $h_{sg}$ is the maximal $s$-permutable subgroup of $g$ contained in $h$. in this paper, we investigate the influence of some $ss$-embedded subgroups on the structure of a finite group $g$. some new results were obtained.
we call $h$ an $ss$-embedded subgroup of $g$ if there exists a normal subgroup $t$ of $g$ such that $ht$ is subnormal in $g$ and $hcap tleq h_{sg}$, where $h_{sg}$ is the maximal $s$-permutable subgroup of $g$ contained in $h$. in this paper, we investigate the influence of some $ss$-embedded subgroups on the structure of a finite group $g$. some new results were obtained.
Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...
Let H be a subgroup of a group G. H is said to be S-embedded in G if G has a normal T such that HT is an S-permutable subgroup of G and H ∩ T ≤ H sG, where H denotes the subgroup generated by all those subgroups of H which are S-permutable in G. In this paper, we investigate the influence of minimal S-embedded subgroups on the structure of finite groups. We determine the structure the finite grou...
this thesis basically deals with the well-known notion of the bear-invariant of groups, which is the generalization of the schur multiplier of groups. in chapter two, section 2.1, we present an explicit formula for the bear-invariant of a direct product of cyclic groups with respect to nc, c>1. also in section 2.2, we caculate the baer-invatiant of a nilpotent product of cyclic groups wuth resp...
let h be a subgroup of a group g. h is said to be s-embedded in g if g has a normal t such that ht is an s-permutable subgroup of g and h ∩ t ≤ h sg, where h denotes the subgroup generated by all those subgroups of h which are s-permutable in g. in this paper, we investigate the influence of minimal s-embedded subgroups on the structure of finite groups. we determine the structure the finite grou...
a subgroup $h$ is said to be $s$-permutable in a group $g$, if $hp=ph$ holds for every sylow subgroup $p$ of $g$. if there exists a subgroup $b$ of $g$ such that $hb=g$ and $h$ permutes with every sylow subgroup of $b$, then $h$ is said to be $ss$-quasinormal in $g$. in this paper, we say that $h$ is a weakly $ss$-quasinormal subgroup of $g$, if there is a normal subgroup ...
a subgroup $h$ is said to be $s$-permutable in a group $g$, if $hp=ph$ holds for every sylow subgroup $p$ of $g$. if there exists a subgroup $b$ of $g$ such that $hb=g$ and $h$ permutes with every sylow subgroup of $b$, then $h$ is said to be $ss$-quasinormal in $g$. in this paper, we say that $h$ is a weakly $ss$-quasinormal subgroup of $g$, if there is a normal subgroup ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید