نتایج جستجو برای: eigenvalues (of graph)
تعداد نتایج: 21175700 فیلتر نتایج به سال:
let $g$ be a graph with vertex set $v(g)$ and edge set $x(g)$ and consider the set $a={0,1}$. a mapping $l:v(g)longrightarrow a$ is called binary vertex labeling of $g$ and $l(v)$ is called the label of the vertex $v$ under $l$. in this paper we introduce a new kind of graph energy for the binary labeled graph, the labeled graph energy $e_{l}(g)$. it depends on the underlying graph $g$...
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
let $n$ be any positive integer and let $f_n$ be the friendship (or dutch windmill) graph with $2n+1$ vertices and $3n$ edges. here we study graphs with the same adjacency spectrum as the $f_n$. two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. let $g$ be a graph cospectral with $f_n$. here we prove that if $g$ has no cycle of length $4$ or $...
let $g$ be a graph without an isolated vertex, the normalized laplacian matrix $tilde{mathcal{l}}(g)$is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$, where $mathcal{d}$ is a diagonal matrix whose entries are degree of vertices of $g$. the eigenvalues of$tilde{mathcal{l}}(g)$ are called as the normalized laplacian ...
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
a concept related to the spectrum of a graph is that of energy. the energy e(g) of a graph g is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of g . the laplacian energy of a graph g is equal to the sum of distances of the laplacian eigenvalues of g and the average degree d(g) of g. in this paper we introduce the concept of laplacian energy of fuzzy graphs. ...
The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...
The concept of average degree-eccentricity matrix ADE(G) of a connected graph $G$ is introduced. Some coefficients of the characteristic polynomial of ADE(G) are obtained, as well as a bound for the eigenvalues of ADE(G). We also introduce the average degree-eccentricity graph energy and establish bounds for it.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید