نتایج جستجو برای: convex domination number
تعداد نتایج: 1219040 فیلتر نتایج به سال:
let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...
let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
Two new domination parameters for a connected graph G: the weakly convex domination number of G and the convex domination number of G are introduced. Relations between these parameters and the other domination parameters are derived. In particular, we study for which cubic graphs the convex domination number equals the connected domination number.
We study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.
The convex domination number and the weakly convex domination number are new domination parameters. In this paper we show that the decision problems of convex and weakly convex dominating sets are NP -complete for bipartite and split graphs. Using a modified version of Warshall algorithm we can verify in polynomial time whether a given subset of vertices of a graph is convex or weakly convex.
abstract: in this thesis, we focus to class of convex optimization problem whose objective function is given as a linear function and a convex function of a linear transformation of the decision variables and whose feasible region is a polytope. we show that there exists an optimal solution to this class of problems on a face of the constraint polytope of feasible region. based on this, we dev...
For a connected graph G = (V,E), a set D ⊆ V (G) is a dominating set of G if every vertex in V (G)−D has at least one neighbour in D. The distance dG(u, v) between two vertices u and v is the length of a shortest (u− v) path in G. An (u− v) path of length dG(u, v) is called an (u− v)-geodesic. A set X ⊆ V (G) is convex in G if vertices from all (a − b)-geodesics belong to X for any two vertices...
The distance dG(u, v) between two vertices u and v in a connected graph G is the length of the shortest uv-path in G. A uv-path of length dG(u, v) is called uv-geodesic. A set X is convex in G if vertices from all ab-geodesics belong to X for every two vertices a, b ∈ X. The convex domination number γcon(G) of a graph G equals the minimum cardinality of a convex dominating set. There are a larg...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید