نتایج جستجو برای: controlled *-g-Bessel sequence
تعداد نتایج: 1185238 فیلتر نتایج به سال:
In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.
in this paper we study the duality of bessel and g-bessel sequences in hilbertspaces. we show that a bessel sequence is an inner summand of a frame and the sum of anybessel sequence with bessel bound less than one with a parseval frame is a frame. next wedevelop this results to the g-frame situation.
In this paper, we introduce $(mathcal{C},mathcal{C}')$-controlled continuous $g$-Bessel families and their multipliers in Hilbert spaces and investigate some of their properties. We show that under some conditions sum of two $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frames is a $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frame. Also, we investigate when a $(mathcal{C},mathca...
In this paper we introduce controlled *-g-frame and *-g-multipliers in Hilbert C*-modules and investigate the properties. We demonstrate that any controlled *-g-frame is equivalent to a *-g-frame and define multipliers for (C,C')- controlled*-g-frames .
in this paper, first we develop the duality concept for $g$-bessel sequences and bessel fusion sequences in hilbert spaces. we obtain some results about dual, pseudo-dual and approximate dual of frames and fusion frames. we also expand every $g$-bessel sequence to a frame by summing some elements. we define the restricted isometry property for $g$-frames and generalize some resu...
let h be a separable hilbert space and let b be the set of bessel sequences in h. by using several interesting results in operator theory we study some topological properties of frames and riesz bases by constructing a banach space structure on b. the convergence of a sequence of elements in b is de_ned and we determine whether important properties of the sequence is preserved under the con...
In this paper, first we develop the duality concept for $g$-Bessel sequences and Bessel fusion sequences in Hilbert spaces. We obtain some results about dual, pseudo-dual and approximate dual of frames and fusion frames. We also expand every $g$-Bessel sequence to a frame by summing some elements. We define the restricted isometry property for $g$-frames and generalize some resu...
abstract. certain facts about frames and generalized frames (g- frames) are extended for the g-frames for hilbert c*-modules. it is shown that g-frames for hilbert c*-modules share several useful properties with those for hilbert spaces. the paper also character- izes the operators which preserve the class of g-frames for hilbert c*-modules. moreover, a necessary and suffcient condition is ob- ...
let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . in this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . as an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via the linear operator .
in this paper, we establish some new results in ultra bessel sequences and ultra bessel sequences of subspaces. also, we investigate ultra bessel sequences in direct sums of hilbert spaces.specially, we show that {( fi, gi)}∞ i=1 is a an ultra bessel sequencefor hilbert space h ⊕ k if and only if { fi}∞ i=1 and {gi}∞ i=1 are ultrabessel sequences for hilbert spaces h and k, respectively.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید