نتایج جستجو برای: continuous g bessel family
تعداد نتایج: 1086434 فیلتر نتایج به سال:
in this paper we introduce continuous $g$-bessel multipliers in hilbert spaces and investigate some of their properties. we provide some conditions under which a continuous $g$-bessel multiplier is a compact operator. also, we show the continuous dependency of continuous $g$-bessel multipliers on their parameters.
In this paper we introduce continuous $g$-Bessel multipliers in Hilbert spaces and investigate some of their properties. We provide some conditions under which a continuous $g$-Bessel multiplier is a compact operator. Also, we show the continuous dependency of continuous $g$-Bessel multipliers on their parameters.
In this paper, we introduce $(mathcal{C},mathcal{C}')$-controlled continuous $g$-Bessel families and their multipliers in Hilbert spaces and investigate some of their properties. We show that under some conditions sum of two $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frames is a $(mathcal{C},mathcal{C}')$-controlled continuous $g$-frame. Also, we investigate when a $(mathcal{C},mathca...
In this paper, we introduce $(p,q)g-$Bessel multipliers in Banach spaces and we show that under some conditions a $(p,q)g-$Bessel multiplier is invertible. Also, we show the continuous dependency of $(p,q)g-$Bessel multipliers on their parameters.
In this paper, we give some conditions under which the finite sum of continuous $g$-frames is again a continuous $g$-frame. We give necessary and sufficient conditions for the continuous $g$-frames $Lambda=left{Lambda_w in Bleft(H,K_wright): win Omegaright}$ and $Gamma=left{Gamma_w in Bleft(H,K_wright): win Omegaright}$ and operators $U$ and $V$ on $H$ such that $Lambda U+Gamma V={Lambda_w U+Ga...
g-frames in hilbert spaces are a redundant set of operators which yield a repre-sentation for each vector in the space. in this paper we investigate the connection betweeng-frames, g-orthonormal bases and g-riesz bases. we show that a family of bounded opera-tors is a g-bessel sequences if and only if the gram matrix associated to its denes a boundedoperator.
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
in this paper we study the duality of bessel and g-bessel sequences in hilbertspaces. we show that a bessel sequence is an inner summand of a frame and the sum of anybessel sequence with bessel bound less than one with a parseval frame is a frame. next wedevelop this results to the g-frame situation.
In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.
the theory of c-frames and c-bessel mappings are the generalizationsof the theory of frames and bessel sequences. in this paper, weobtain several equivalent conditions for dual of c-bessel mappings.we show that for a c-bessel mapping $f$, a retrievalformula with respect to a c-bessel mapping $g$ is satisfied if andonly if $g$ is sum of the canonical dual of $f$ with a c-besselmapping which wea...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید