نتایج جستجو برای: conjugacy classes of non-normal subgroups

تعداد نتایج: 21316813  

Journal: :bulletin of the iranian mathematical society 2015
h. mousavi

for a finite group $g$ let $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$. we give a short proof of a theorem of brandl, which classifies finite groups with $nu(g)=1$.

‎Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$‎. ‎In this paper‎, ‎all nilpotent groups $G$ with $nu(G)=3$ are classified‎.  

Journal: :bulletin of the iranian mathematical society 2014
h. mousavi

‎let $g$ be a finite group and $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$‎. ‎in this paper‎, ‎all nilpotent groups $g$ with $nu(g)=3$ are classified‎.

Journal: :international journal of group theory 2014
hamid mousavi

‎for a finite group $g$ let $nu(g)$ denote the number of conjugacy classes of non-normal subgroups of $g$‎. ‎the aim of this paper is to classify all the non-nilpotent groups with $nu(g)=3$‎.

For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

Journal: :international journal of group theory 2012
amin saeidi

‎let $g$ be a finite group and let $n$ be a normal subgroup of $g$‎. ‎suppose that ${rm{irr}} (g | n)$ is the set of the irreducible characters of $g$ that contain $n$ in their kernels‎. ‎in this paper‎, ‎we classify solvable groups $g$ in which the set $mathcal{c} (g) = {{rm{irr}} (g | n) | 1 ne n trianglelefteq g }$ has at most three elements‎. ‎we also compute the set $mathcal{c}(g)$ for suc...

‎Let $G$ be a finite group‎. ‎By $MT(G)=(m_1,cdots,m_k)$ we denote the type of‎ ‎conjugacy classes of maximal subgroups of $G$‎, ‎which implies that $G$ has exactly $k$ conjugacy classes of‎ ‎maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates‎ ‎of maximal subgroups of $G$‎, ‎where $m_1leqcdotsleq m_k$‎. ‎In this paper‎, ‎we‎ ‎give some new characterizations of finite groups by ...

Journal: :International Journal of Algebra and Computation 2016

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید