نتایج جستجو برای: completely regular $sigma$-frames
تعداد نتایج: 342327 فیلتر نتایج به سال:
This paper establishes two new connections between the familiar function ring functor ${mathfrak R}$ on the category ${bf CRFrm}$ of completely regular frames and the category {bf CR}${mathbf sigma}${bf Frm} of completely regular $sigma$-frames as well as their counterparts for the analogous functor ${mathfrak Z}$ on the category {bf ODFrm} of 0-dimensional frames, given by the integer-valued f...
Let L be a frame. We denoted the set of all regular ideals of cozL by rId(cozL) . The aim of this paper is to study these ideals. For a frame L , we show that rId(cozL) is a compact completely regular frame and the map jc : rId(cozL)→L given by jc (I)=⋁I is a compactification of L which is isomorphism to its Stone–Čech compactification and is proved that jc have a right adjoint rc : L →...
Classically, a Tychonoff space is called strongly 0-dimensional if its Stone-Čech compactification is 0-dimensional, and given the familiar relationship between spaces and frames it is then natural to call a completely regular frame strongly 0-dimensional if its compact completely regular coreflection is 0-dimensional (meaning: is generated by its complemented elements). Indeed, it is then seen...
Classically, a Tychonoff space is called strongly 0-dimensional if its Stone-Čech compactification is 0-dimensional, and given the familiar relationship between spaces and frames it is then natural to call a completely regular frame strongly 0-dimensional if its compact completely regular coreflection is 0-dimensional (meaning: is generated by its complemented elements). Indeed, it is then seen...
In this paper, by considering the notion of $Sigma$-hyperalgebras for an arbitrary signature $Sigma$, we study the notions of regular and strongly regular relations on a $Sigma$-hyperalgebra, $mathfrak{A}$. We show that each regular relation which contains a strongly regular relation is a strongly regular relation. Then we concentrate on the connection between the fundamental relation of $mathf...
Compact regular frames are always spatial. In this note we present a method for constructing non-spatial frames. As an application we show that there is a countably compact (and hence pseudocompact) completely regular frame which is not spatial.
A frame $L$ is called {it coz-dense} if $Sigma_{coz(alpha)}=emptyset$ implies $alpha=mathbf 0$. Let $mathcal RL$ be the ring of real-valued continuous functions on a coz-dense and completely regular frame $L$. We present a description of the socle of the ring $mathcal RL$ based on minimal ideals of $mathcal RL$ and zero sets in pointfree topology. We show that socle of $mathcal RL$ is an essent...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید