نتایج جستجو برای: c-nilpotent multiplier

تعداد نتایج: 1069967  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم 1375

this thesis basically deals with the well-known notion of the bear-invariant of groups, which is the generalization of the schur multiplier of groups. in chapter two, section 2.1, we present an explicit formula for the bear-invariant of a direct product of cyclic groups with respect to nc, c>1. also in section 2.2, we caculate the baer-invatiant of a nilpotent product of cyclic groups wuth resp...

In this paper we determine the structure of (c,1,...,1) polynilpotent multiplier of certain class of groups. The method is based on the characterizing an explicit structure for the Baer invariant of a free nilpotent group with respect to the variety of polynilpotent groups of class row (c,1,...,1).

Journal: :Bulletin of the Malaysian Mathematical Sciences Society 2019

Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...

Journal: :bulletin of the iranian mathematical society 2011
b. mashayekhy a. hokmabadi f. mohammadzadeh

let $g$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(g)$ and let $m=lfloorlog_pk floor$. we show that $exp(m^{(c)}(g))$ divides $exp(g)p^{m(k-1)}$, for all $cgeq1$, where $m^{(c)}(g)$ denotes the c-nilpotent multiplier of $g$. this implies that $exp( m(g))$ divides $exp(g)$, for all finite $p$-groups of class at most $p-1$. moreover, we show that our result is an improvement...

Hadi Hosseini Fadravi Homayoon Arabyani,

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

Journal: :algebraic structures and their applications 0
homayoon arabyani islamic azad university hadi hosseini fadravi islamic azad university

assume that $(n,l)$, is a pair of finite dimensional nilpotent lie algebras, in which $l$ is non-abelian and $n$ is an ideal in $l$ and also $mathcal{m}(n,l)$ is the schur multiplier of the pair $(n,l)$. motivated by characterization of the pairs $(n,l)$ of finite dimensional nilpotent lie algebras by their schur multipliers (arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

Journal: :bulletin of the iranian mathematical society 2011
b. mashayekhy f. mohammadzadeh

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید