نتایج جستجو برای: atom–bond connectivity index
تعداد نتایج: 459849 فیلتر نتایج به سال:
the atom-bond connectivity index of graph is a topological index proposed by estrada et al.as abc (g) uve (g ) (du dv 2) / dudv , where the summation goes over all edges ofg, du and dv are the degrees of the terminal vertices u and v of edge uv. in the present paper,some upper bounds for the second type of atom-bond connectivity index are computed.
let $g$ be a non-abelian group. the non-commuting graph $gamma_g$ of $g$ is defined as the graph whose vertex set is the non-central elements of $g$ and two vertices are joined if and only if they do not commute.in this paper we study some properties of $gamma_g$ and introduce $n$-regular $ac$-groups. also we then obtain a formula for szeged index of $gamma_g$ in terms of $n$, $|z(g)|$ and $|g|...
the first extended zeroth-order connectivity index of a graph g is defined as 0 1/2 1 ( ) ( ) , v v v g g d where v (g) is the vertex set of g, and v d is the sum of degrees of neighbors of vertex v in g. we give a sharp lower bound for the first extended zeroth-order connectivity index of trees with given numbers of vertices and pendant vertices,...
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
eccentric connectivity index has been found to have a low degeneracy and hence a significantpotential of predicting biological activity of certain classes of chemical compounds. wepresent here explicit formulas for eccentric connectivity index of various families of graphs.we also show that the eccentric connectivity index grows at most polynomially with thenumber of vertices and determine the ...
in this paper, a new molecular-structure descriptor, the general sum–connectivity co–index is considered, which generalizes the first zagreb co–index and the general sum–connectivity index of graph theory. we mainly explore the lower and upper bounds in termsof the order and size for this new invariant. additionally, the nordhaus–gaddum–type resultis also represented.
let $gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. denote by $upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. in the classes of graphs $gamma_{n,kappa}$ and $upsilon_{n,beta}$, the elements having maximum augmented zagreb index are determined.
In theoretical chemistry, -modified Wiener index is a graph invariant topological index to analyze the chemical properties of molecular structure. In this note, we determine the minimum -modified Wiener index of graph with fixed connectivity or edge-connectivity. Our results also present the sufficient and necessary condition for reaching the lower bound.
let g be a connected simple (molecular) graph. the distance d(u, v) between two vertices u and v of g is equal to the length of a shortest path that connects u and v. in this paper we compute some distance based topological indices of h-phenylenic nanotorus. at first we obtain an exactformula for the wiener index. as application we calculate the schultz index and modified schultz index of this ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید