نتایج جستجو برای: a-labeling
تعداد نتایج: 13441703 فیلتر نتایج به سال:
0
Graceful labelings use a prominent place among difference vertex labelings. In this work we present new families of graceful graphs all of them obtained applying a general substitution result. This substitution is applied here to replace some paths with some trees with a more complex structures. Two caterpillars with the same size are said to be textit{analogous} if thelarger stable sets, in bo...
a graph g is said to have a totally magic cordial labeling with constant c if there exists a mapping f : v (g) ∪ e(g) → {0, 1} such that f(a) + f(b) + f(ab) ≡ c (mod 2) for all ab ∈ e(g) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. in this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...
mean labelings are a type of additive vertex labeling. this labeling assigns non-negative integers to the vertices of a graph in such a way that all edge-weights are different, where the weight of an edge is defined as the mean of the end-vertex labels rounded up to the nearest integer. in this paper we focus on mean labelings of some graphs that are the result of the corona operation. in parti...
in this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. let g = (v,e) be a graph with p vertices and q edges. g is said be skolem odd difference mean if there exists a function f : v (g) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : e(g) → {1, 3, 5, . . . , 2q−1} d...
let g(v,e) be a graph with p vertices and q edges. a graph g is said to have an odd mean labeling if there exists a function f : v (g) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : e(g) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. a graph that admits an odd mean lab...
let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-f...
In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
a graph of size n is said to be graceful when is possible toassign distinct integers from {0, 1, . . . , n} to its verticesand {|f(u)−f(v)| : uv ∈ e(g)} consists of n integers. inthis paper we present broader families of graceful graphs; these families are obtained via three different operations: the third power of a caterpillar, the symmetric product of g and k2 , and the disjoint :union: of g...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید