نتایج جستجو برای: Zeros of Abelian integrals
تعداد نتایج: 21170995 فیلتر نتایج به سال:
we consider the number of zeros of the integral $i(h) = oint_{gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. we prove that the number of zeros of $i(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
we consider the number of zeros of the integral $i(h) = oint_{gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. we prove that the number of zeros of $i(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
One of the main results of this paper is an upper bound for the total number of real isolated zeros of complete Abelian integrals, exponential in the degree of the form (Theorem 1 below). This result improves a previously obtained in [IY1] double exponential estimate for the number of real isolated zeros on a positive distance from the singular locus. In fact, the theorem on zeros of Abelian in...
We give a uniform asymptotic bound for the number of zeros of complete Abelian integrals in domains bounded away from infinity and the singularities.
We consider the number of zeros of the integral $I(h) = oint_{Gamma_h} omega$ of real polynomial form $omega$ of degree not greater than $n$ over a family of vanishing cycles on curves $Gamma_h:$ $y^2+3x^2-x^6=h$, where the integral is considered as a function of the parameter $h$. We prove that the number of zeros of $I(h)$, for $0 < h < 2$, is bounded above by $2[frac{n-1}{2}]+1$.
We suggest an algorithm for derivation of the Picard–Fuchs system of Pfaffian equations for Abelian integrals corresponding to semiquasihomogeneous Hamiltonians. It is based on an effective decomposition of polynomial forms in the Brieskorn lattice. The construction allows for an explicit upper bound on the norms of the polynomial coefficients, an important ingredient in studying zeros of these...
We prove that the lowest upper bound for the number of isolated zeros of the Abelian integrals associated to quadratic Hamiltonian vector fields having a center and an invariant straight line after quadratic perturbations is one.
We give a simple proof of an isomorphism between two C(t)-modules corresponding to bivariate polynomial H with non-degenerate highest homogeneous part: the module of relative cohomologies 2/dH ∧ 1 and the module of Abelian integrals. Using this isomorphism, we prove the existence and deduce some properties of the corresponding Picard–Fuchs system. Mathematics Subject Classification: 14D05, 32S4...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید