نتایج جستجو برای: Zarankiewicz number

تعداد نتایج: 1168365  

Journal: :journal of algorithms and computation 0
alex f. collins rochester institute of technology, school of mathematical sciences, rochester, ny 14623 alexander w. n. riasanovsky university of pennsylvania, department of mathematics, philadelphia, pa 19104, usa john c. wallace trinity college, department of mathematics, hartford, ct 06106, usa stanis law p. radziszowski rochester institute of technology, department of computer science, rochester, ny 14623

the zarankiewicz number z(b; s) is the maximum size of a subgraph of kb,b which does not contain ks,s as a subgraph. the two-color bipartite ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of kb,b with two colors contains a ks,s in the rst color or a kt,t in the second color.in this work, we design and exploit a computational method for bounding and computin...

2006
Kouhei Asano

Abstract: The well known Zarankiewicz’ conjecture is said that the crossing number of the complete bipartite graph Km,n (m ≤ n) is Z(m, n), where Z(m,n) = ⌊ m 2 ⌋⌊ 2 ⌋⌊ 2 ⌋ ⌊ 2 ⌋ (for any real number x, ⌊x⌋ denotes the maximal integer no more than x). Presently, Zarankiewicz’ conjecture is proved true only for the case m ≤ 6. In this article, the authors prove that if Zarankiewicz’ conjecture h...

Journal: :Discrete Mathematics 2000
Wayne Goddard Michael A. Henning Ortrud R. Oellermann

The Zarankiewicz number z(s, m) is the maximum number of edges in a subgraph of K(s, s) that does not contain K(m, m) as a subgraph. The bipartite Ramsey number b(m, n) is the least positive integer b such that if the edges of K(b, b) are coloured with red and blue, then there always exists a blue K(m, m) or a red K(n, n). In this paper we calculate small exact values of z(s, 2) and determine b...

2015
Nabil H. Mustafa János Pach

Let d and t be fixed positive integers, and let K t,...,t denote the complete d-partite hypergraph with t vertices in each of its parts, whose hyperedges are the d-tuples of the vertex set with precisely one element from each part. According to a fundamental theorem of extremal hypergraph theory, due to Erdős [7], the number of hyperedges of a d-uniform hypergraph on n vertices that does not co...

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

Journal: :Ars Comb. 2015
Janusz Dybizbanski Tomasz Dzido Stanislaw P. Radziszowski

The Zarankiewicz number z(m,n; s, t) is the maximum number of edges in a subgraph of Km,n that does not contain Ks,t as a subgraph. The bipartite Ramsey number b(n1, · · · , nk) is the least positive integer b such that any coloring of the edges of Kb,b with k colors will result in a monochromatic copy of Kni,ni in the i-th color, for some i, 1 ≤ i ≤ k. If ni = m for all i, then we denote this ...

Journal: :CoRR 2016
Artem Chernikov David Galvin Sergei Starchenko

We establish a cutting lemma for definable families of sets in distal structures, as well as the optimality of the distal cell decomposition for definable families of sets on the plane in ominimal expansions of fields. Using it, we generalize the results in [10] on the semialgebraic planar Zarankiewicz problem to arbitrary o-minimal structures, in particular obtaining an o-minimal generalizatio...

2002
Richard Wilson

Because of the large success of very large scale integration (VLSI) technology many researchers have focused on optimizing the VLSI circuit layout. One of the major tasks is minimizing the number of wire crossings in a circuit, as this greatly reduces the chance of cross-talk in long crossing wires carrying the same signal and also allows for faster operation and less power dissipation. The que...

Journal: :Electr. J. Comb. 2009
László Babai Barry Guiduli

Let G be a graph on n vertices with spectral radius λ (this is the largest eigenvalue of the adjacency matrix of G). We show that if G does not contain the complete bipartite graph Kt,s as a subgraph, where 2 6 t 6 s, then λ 6 (

2016
Vijaya N Bharati Rajan Ibrahim Venkat

The crossing number of a graph G is the minimum number of crossings of its edges among the drawings of G in the plane and is denoted by cr(G). Zarankiewicz conjectured that the crossing number of the complete bipartite graph Km,n equals . This conjecture has been verified by Kleitman for min {m, n} ≤ 6. Using this result, we give the exact values of crossing number of the join of a certain grap...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید