نتایج جستجو برای: Zagreb coindices
تعداد نتایج: 2423 فیلتر نتایج به سال:
In this paper, the edge a-Zagreb indices and its coindices of some graph operations, such as generalized hierarchical product, Cartesian Product, join, composition of two graphs are obtained. Using the results obtained here, we deduce the F -indices and its coindices for the above graph operation. Finally, we have computed the edge a-Zagreb Index, F -index and their coindices of some important ...
For a nontrivial graph G, its first and second Zagreb coindices are defined [1], respectively, as M1(G) = ∑ uv ∈E(G) (dG(u)+dG(v)) and M2(G) = ∑ uv ∈E(G) dG(u)dG(v), where dG(x) is the degree of vertex x in G. In this paper, we obtained some new properties of Zagreb coindices. We mainly give explicit formulae for the first Zagreb coindex of line graphs and total graphs. Mathematics Subject Clas...
let g=(v,e) be a simple connected graph with vertex set v and edge set e. the first, second and third zagreb indices of g are respectivly defined by: $m_1(g)=sum_{uin v} d(u)^2, hspace {.1 cm} m_2(g)=sum_{uvin e} d(u).d(v)$ and $ m_3(g)=sum_{uvin e}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in g and uv is an edge of g connecting the vertices u and v. recently, the first and second m...
Recently introduced Zagreb coindices are a generalization of classical Zagreb indices of chemical graph theory. We explore here their basic mathematical properties and present explicit formulae for these new graph invariants under several graph operations.
For a nontrivial graph G, its first Zagreb coindex is defined as the sum of degree sum over all non-adjacent vertex pairs in G and the second Zagreb coindex is defined as the sum of degree product over all non-adjacent vertex pairs in G. Till now, established results concerning Zagreb coindices are mainly related to composite graphs and extremal values of some special graphs. The existing liter...
Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...
For a (molecular) graph, the hyper Zagreb index is defined as HM(G) = ∑ uv∈E(G) (dG(u) + dG(v)) 2 and the hyper Zagreb coindex is defined asHM(G) = ∑ uv/ ∈E(G) (dG(u)+dG(v)) 2. In this paper, the hyper Zagreb indices and its coindices of edge corona product graph, double graph and Mycielskian graph are obtained.
In this note, we obtain the expressions for multiplicative Zagreb indices and coindices of derived graphs such as a line graph, subdivision graph, vertex-semitotal graph, edge-semitotal graph, total graph and paraline graph.
We give sharp upper bounds on the Zagreb indices and lower bounds on the Zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.
we give sharp upper bounds on the zagreb indices and lower bounds on the zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید