نتایج جستجو برای: Wiener polynomial
تعداد نتایج: 105290 فیلتر نتایج به سال:
the wiener index is a graph invariant that has found extensive application in chemistry. inaddition to that a generating function, which was called the wiener polynomial, who’sderivate is a q-analog of the wiener index was defined. in an article, sagan, yeh and zhang in[the wiener polynomial of a graph, int. j. quantun chem., 60 (1996), 959969] attainedwhat graph operations do to the wiener po...
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
let g be a simple graph. the hosoya polynomial of g is ( , ) ,( , ) = { , } ( ) xd u v h g x u v v gwhere d(u,v) denotes the distance between vertices u and v . the dendrimer nanostar is apart of a new group of macromolecules. in this paper we compute the hosoya polynomial foran infinite family of dendrimer nanostar. as a consequence we obtain the wiener index andthe hyper-wiener index of th...
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
let $g$ be a molecular graph with vertex set $v(g)$, $d_g(u, v)$ the topological distance between vertices $u$ and $v$ in $g$. the hosoya polynomial $h(g, x)$ of $g$ is a polynomial $sumlimits_{{u, v}subseteq v(g)}x^{d_g(u, v)}$ in variable $x$. in this paper, we obtain an explicit analytical expression for the expected value of the hosoya polynomial of a random benzenoid chain with $n$ hexagon...
Formulas for the Wiener number and the Hosoya-Wiener polynomial of edge and vertex weighted graphs are given in terms of edge and path contributions. For a rooted tree, the Hosoya-Wiener polynomial is expressed as a sum of vertex contributions. Finally, a recursive formula for computing the Hosoya-Wiener polynomial of a weighted tree is given.
The Wiener matrix and the hyper-Wiener number of a tree (acyclic structure), higher Wiener numbers of a tree that can be represented by a Wiener number sequence W, W,W.... whereW = W is the Wiener index, and R W k K ,.... 2 , 1 is the hyper-Wiener number. The concepts of the Wiener vector and hyper-Wiener vector of a graph are introduced for the molecular graph of bi-phenylene. Moreover, ...
The Wiener index is a graphical invariant that has found extensive application in chemistry. We define a generating function, which we call the Wiener polynomial, whose derivative is a q-analog of the Wiener index. We study some of the elementary properties of this polynomial and compute it for some common graphs. We then find a formula for the Wiener polynomial of a dendrimer, a certain highly...
The distance $d(u,v)$ between two vertices $u$ and $v$ of a graph $G$ is equal to the length of a shortest path that connects $u$ and $v$. Define $WW(G,x) = 1/2sum_{{ a,b } subseteq V(G)}x^{d(a,b) + d^2(a,b)}$, where $d(G)$ is the greatest distance between any two vertices. In this paper the hyper-Wiener polynomials of the Cartesian product, composition, join and disjunction of graphs are compu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید