نتایج جستجو برای: Weakly annihilating submodule
تعداد نتایج: 44405 فیلتر نتایج به سال:
in this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. weobserve that over a commutative ring $r$, $bbb{ag}_*(_rm)$ isconnected and diam$bbb{ag}_*(_rm)leq 3$. moreover, if $bbb{ag}_*(_rm)$ contains a cycle, then $mbox{gr}bbb{ag}_*(_rm)leq 4$. also for an $r$-module $m$ with$bbb{a}_*(m)neq s(m)setminus {0}$, $...
primary-like and weakly primary-like submodules are two new generalizations of primary ideals from rings to modules. in fact, the class of primary-like submodules of a module lie between primary submodules and weakly primary-like submodules properly. in this note, we show that these three classes coincide when their elements are submodules of a multiplication module and satisfy the primeful pr...
In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...
In this paper we continue to study the strongly annihilating-submodule graph. addition providing more properties of graph, compare extensively graph with
Let R be a commutative ring with identity , and M is unitary left R-module”, “A proper submodule E of an R-module called weakly quasi-prime if whenever r, s ∈ R, m M, 0 ≠ rsm implies that rm or sm E”. “We introduce the concept quasi 2-absorbing as generalization submodule”, where r,s,t ∈M 0≠ rstm rtm stm E. we study basic properties 2-absorbing. Furthermore, relationships other classes module a...
In this article, we give several generalizations of the concept of annihilating an ideal graph over a commutative ring with identity to modules. We observe that, over a commutative ring, R, AG∗(RM) is connected, and diamAG∗(RM) ≤ 3. Moreover, if AG∗(RM) contains a cycle, then grAG∗(RM) ≤ 4. Also for an R-module M with A∗(M) ̸= S(M) \ {0}, A∗(M) = ∅, if and only if M is a uniform module, and ann(...
In this paper we introduce and study the concept weakly semi-2-absorbing submodule as a generalization of 2-absorbing subomdule, give some it is basic properties characterization
In this paper, all rings are associative with identity and all modules are unital left modules unless otherwise specified. Let R be a ring and M a module. N ≤M will mean N is a submodule of M. A submodule E of M is called essential in M (notation E ≤e M) if E∩A = 0 for any nonzero submodule A of M. Dually, a submodule S of M is called small in M (notation S M) if M = S+T for any proper submodul...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید