نتایج جستجو برای: Vertex removable cycle
تعداد نتایج: 314605 فیلتر نتایج به سال:
in this paper we defined the vertex removable cycle in respect of the following, if $f$ is a class of graphs(digraphs) satisfying certain property, $g in f $, the cycle $c$ in $g$ is called vertex removable if $g-v(c)in in f $. the vertex removable cycles of eulerian graphs are studied. we also characterize the edge removable cycles of regular graphs(digraphs).
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
in this paper we define the removable cycle that, if $im$ is a class of graphs, $gin im$, the cycle $c$ in $g$ is called removable if $g-e(c)in im$. the removable cycles in eulerian graphs have been studied. we characterize eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for eulerian graph to have removable cycles h...
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
the vertex arboricity $rho(g)$ of a graph $g$ is the minimum number of subsets into which the vertex set $v(g)$ can be partitioned so that each subset induces an acyclic graph. a graph $g$ is called list vertex $k$-arborable if for any set $l(v)$ of cardinality at least $k$ at each vertex $v$ of $g$, one can choose a color for each $v$ from its list $l(v)$ so that the subgraph induced by ev...
Mader and Jackson independently proved that every 2-connected simple graph G with minimum degree at least four has a removable cycle, that is, a cycle C such that G\E(C) is 2-connected. This paper considers the problem of determining when every edge of a 2-connected graph G, simple or not, can be guaranteed to lie in some removable cycle. The main result establishes that if every deletion of tw...
a special class of cubic graphs are the cycle permutation graphs. a cycle permutation graph pn(α) is defined by taking two vertex-disjoint cycles on n vertices and adding a matching between the vertices of the two cycles.in this paper we determine a good upper bound for tenacity of cycle permutation graphs.
The lower bound on the length of 'removable' cycles in Theorem 1 is essentially best possible since there exist 2-connected simple graphs of minimum degree k whose longest 'removable' cycle has length k + i. Moreover, for the special case k = 4, we can construct 2-connected, 4-regular simple graphs whose longest 'removable' cycle has length four. The following counterexample which was independe...
We consider the problem of simplifying a planar triangle mesh using edge contractions, under the restriction that the resulting vertices must be a subset of the input set. That is, contraction of an edge must be made onto one of its adjacent vertices, which results in removing the other adjacent vertex. We show that if the perimeter of the mesh consists of at most five vertices, then we can alw...
a vertex irregular total k-labeling of a graph g with vertex set v and edge set e is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. the total vertex irregularity strength of g, denoted by tvs(g)is the minimum value of the largest label k over all such irregular assignment. in this paper, we study the to...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید