نتایج جستجو برای: Vector metric space
تعداد نتایج: 724582 فیلتر نتایج به سال:
in this paper, vector ultrametric spaces are introduced and a fixed point theorem is given forcorrespondences. our main result generalizes a known theorem in ordinary ultrametric spaces.
In this paper we consider the so called a vector metric space, which is a generalization of metric space, where the metric is Riesz space valued. We prove some common fixed point theorems for three mappings in this space. Obtained results extend and generalize well-known comparable results in the literature.
in this paper we consider the so called a vector metric space, which is a generalization of metric space, where the metric is riesz space valued. we prove some common fixed point theorems for three mappings in this space. obtained results extend and generalize well-known comparable results in the literature.
The aim of this paper is to establish the equivalence between the concepts of an $S$-metric space and a cone $S$-metric space using some topological approaches. We introduce a new notion of a $TVS$-cone $S$-metric space using some facts about topological vector spaces. We see that the known results on cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained from...
the notion of a probabilistic metric space corresponds to thesituations when we do not know exactly the distance. probabilistic metric space was introduced by karl menger. alsina, schweizer and sklar gave a general definition of probabilistic normed space based on the definition of menger [1]. in this note we study the pn spaces which are topological vector spaces and the open mapping an...
in this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by bota et al. [m-f. bota, a. petrusel, g.petrusel and b. samet, coupled fixed point theorems forsingle-valued operators in b-metric spaces, fixed point theoryappl. (2015) 2015:231]. also, we prove that perov-type fixed pointtheorem in ordered gen...
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
The notion of a probabilistic metric space corresponds to thesituations when we do not know exactly the distance. Probabilistic Metric space was introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of probabilistic normed space based on the definition of Menger [1]. In this note we study the PN spaces which are topological vector spaces and the open mapping an...
Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
pseudo ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo ricci symmetric real hypersurfaces of the complex projective space cpn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید