نتایج جستجو برای: VIGS
تعداد نتایج: 345 فیلتر نتایج به سال:
Summary Virus-induced gene silencing (VIGS) is an extremely powerful tool for plant functional genomics. We used Tobacco rattle virus (TRV)-derived VIGS vectors expressed from binary vectors within Agrobacterium to induce RNA silencing in plants. Leaf infiltration is the most common method of agroinoculation used for VIGS but this method has limitations as it is laborious for large-scale screen...
Virus-induced gene silencing (VIGS) is a plant RNA-silencing technique that uses viral vectors carrying a fragment of a gene of interest to generate double-stranded RNA, which initiates the silencing of the target gene. Several viral vectors have been developed for VIGS and they have been successfully used in reverse genetics studies of a variety of processes occurring in plants. This approach ...
The phytoene desaturase (PDS) gene of Nicotiana benthamiana was silenced in plants infected with potato virus X (PVX) vectors carrying PDS inserts, and a green fluorescent protein (GFP) transgene was silenced in plants infected with PVX-GFP. This virus-induced gene silencing (VIGS) is post-transcriptional and cytoplasmic because it is targeted against exons rather than introns of PDS RNA and ag...
Virus-induced gene silencing (VIGS) has been shown to be of great potential in plant reverse genetics. Advantages of VIGS over other approaches, such as T-DNA or transposon tagging, include the circumvention of plant transformation, methodological simplicity and robustness, and speedy results. These features make VIGS an attractive alternative instrument in functional genomics, even in a high t...
Virus-induced gene silencing (VIGS) is a valuable tool for identification and characterization of genes function. To improve the efficiency of VIGS in different organ, we developed an organ-specific VIGS that could be applied to tomato (Solanum lycopersicum cv Micro Tom) leaves, flowers and fruits respectively. With phytoene desaturase (PDS) as a reporter gene, almost up to 100% of efficiency o...
Virus-induced gene silencing (VIGS) is an effective tool for gene function analysis in plants. Over the last decade, VIGS has been successfully used as both a forward and reverse genetics technique for gene function analysis in various model plants, as well as crop plants. With the increased identification of differentially expressed genes under various abiotic stresses through high-throughput ...
Virus induced gene silencing (VIGS) is increasingly used to generate transient loss-of-function assays and has potential as a powerful reverse-genetics tool in functional genomic programs as a more rapid alternative to stable transformation. A previously described potato virus X (PVX) VIGS vector has been shown to trigger silencing in the permissive host Nicotiana benthamiana. This paper demons...
Virus-induced gene silencing (VIGS) is an attractive tool for determining gene function in plants. The present study constitutes the first application of VIGS in S. pseudocapsicum, which has great ornamental and pharmaceutical value, using tobacco rattle virus (TRV) vectors. Two marker genes, PHYTOENE DESATURASE (PDS) and Mg-chelatase H subunit (ChlH), were used to test the VIGS system in S. ps...
Virus-induced gene silencing (VIGS) is one of the reverse genetics tools for analysis of gene function that uses viral vectors carrying a target gene fragment to produce dsRNA which trigger RNA-mediated gene silencing. There are a number of viruses which have been modified to silence the gene of interest effectively with a sequence-specific manner. Therefore, different types of methodologies ha...
ABSTRACT Virus-induced gene silencing (VIGS) is a powerful gene-silencing tool that has been intensively applied in plants. To data, the application of VIGS rubber tree not yet reported. In this study, we described efficient by VIGS. The encoding Hevea brasiliensis phytoene desaturase (HbPDS) was identified genome. Small interfering RNAs from HbPDS and fragment were predicted length 399 bp sele...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید