نتایج جستجو برای: Ulam-Hyers--Rassias stability

تعداد نتایج: 300812  

2012
Zhihua Wang Yong-Guo Shi

In the paper we discuss a stability in the sense of the generalized Hyers-Ulam-Rassias for functional equations ∆n(p, c)φ(x) = h(x), which is called generalized Newton difference equations, and give a sufficient condition of the generalized Hyers-Ulam-Rassias stability. As corollaries, we obtain the generalized Hyers-Ulam-Rassias stability for generalized forms of square root spirals functional...

Journal: :J. Applied Mathematics 2012
Yeol Je Cho Shin Min Kang Reza Saadati

The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theoremwas generalized byAoki 3 for additive mappings and by Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias 4 has pr...

2017
Akbar Zada Sartaj Ali Yongjin Li

In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional differential equations with non-instantaneous integral impulses and nonlinear integral boundary condition. We also establish certain conditions fo...

2010
H. AZADI Themistocles M. Rassias

Recently, in [5], Najati and Moradlou proved Hyers-Ulam-Rassias stability of the following quadratic mapping of Apollonius type Q(z − x) + Q(z − y) = 1 2 Q(x− y) + 2Q ( z − x + y 2 ) in non-Archimedean space. In this paper we establish Hyers-Ulam-Rassias stability of this functional equation in random normed spaces by direct method and fixed point method. The concept of Hyers-Ulam-Rassias stabi...

2010
Jung Rye Lee Ji-hye Kim Choonkil Park Fabio Zanolin

The stability problem of functional equations is originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki 3 for additive mappings and by Th. M. Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Th. ...

2009
IOAN A. RUS

In this paper we present four types of Ulam stability for ordinary differential equations: Ulam-Hyers stability, generalized UlamHyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-HyersRassias stability. Some examples and counterexamples are given.

2008
Choonkil Park Thomas Bartsch

The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki 3 for additive mappings and by Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias 4 has ...

Journal: :J. Applied Mathematics 2011
Gwang Hui Kim

The stability problem of the functional equation was conjectured by Ulam 1 during the conference in the University of Wisconsin in 1940. In the next year, it was solved by Hyers 2 in the case of additive mapping, which is called the Hyers-Ulam stability. Thereafter, this problem was improved by Bourgin 3 , Aoki 4 , Rassias 5 , Ger 6 , and Gǎvruţa et al. 7, 8 in which Rassias’ result is called t...

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

Journal: :J. Applied Mathematics 2011
Abbas Javadian Elahe Sorouri Gwang Hui Kim M. Eshaghi Gordji

The stability problem of functional equations started with the question concerning stability of group homomorphisms proposed by Ulam 1 during a talk before a Mathematical Colloquium at the University of Wisconsin, Madison. In 1941, Hyers 2 gave a partial solution of Ulam’s problem for the case of approximate additive mappings in the context of Banach spaces. In 1978, Rassias 3 generalized the t...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید