نتایج جستجو برای: TiO2/γ-CD NPs
تعداد نتایج: 58474 فیلتر نتایج به سال:
We have investigated the cytotoxic assay of Fe-aminoclay (FeAC) nanoparticles (NPs) and simultaneous imaging in HeLa cells by photoluminescent carbon nanodots (CD) conjugation. Non-cytotoxic, photostable, and CD NPs are conjugated with cationic FeAC NPs where CD NPs play a role in bio-imaging and FeAC NPs act as a substrate for CD conjugation and help to uptake of NPs into cancer cells due to p...
We designed a β-CD dimer on silver nanoparticles embedded with silica nanoparticles (Ag@SiO2 NPs) structure to detect polycyclic aromatic hydrocarbons (PAHs). Silica NPs were utilized as a template for embedding silver NPs to create hot spot structures and enhance the surface-enhanced Raman scattering (SERS) signal, and a thioether-bridged dimeric β-CD was immobilized on Ag NPs to capture PAHs....
The aim of this study was to characterize new nanoparticles (NPs) containing chitosan (CS), or CS/cyclodextrin (CDs), and evaluate their potential for the oral delivery of the peptide glutathione (GSH). More precisely, NP formulations composed of CS, CS/alpha-CD and CS/sulphobutyl ether-beta-cyclodextrin (SBE(7m)-beta-CD) were investigated for this application. CS/CD NPs showed particle sizes r...
Ethylenediamine-modified β-cyclodextrin (Et-β-CD) was immobilized on aggregated silver nanoparticle (NP)-embedded silica NPs (SiO₂@Ag@Et-β-CD NPs) for the effective detection of flavonoids. Silica NPs were used as the template for embedding silver NPs to create hot spots and enhance surface-enhanced Raman scattering (SERS) signals. Et-β-CD was immobilized on Ag NPs to capture flavonoids via hos...
In this work, an efficient photocatalyst based on gamma-cyclodextrin-modified titanium dioxide nanoparticles (TiO2/γ-CD NPs) was synthesized and used for photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB). The results of FESEM, EDX, TEM, FT-IR, XRD and BET surface area measurement showed that the TiO2 NPs were effectively modifi...
The risk of nanoparticles (NPs) to organisms and the environment has become more noticeable alongside their rapid applications in many fields. The release of Cd(2+) from CdTe-based NPs (CdTe-NPs), an important class of engineered nanomaterials, is one of the possible factors responsible for the cytotoxicity of these NPs. Based on the same CdTe core, CdTe/CdS, CdTe/ZnS and CdTe/SiO(2) NPs were s...
A growth chamber pot experiment and a field plot experiment were conducted with the installation of rhizobags to study the effects of repeated phytoextraction by Sedum plumbizincicola on the bioavailability of Cd and Zn in the rhizosphere and bulk soil Repeated phytoextraction gave significantly lower Cd and Zn concentrations in both rhizosphere and bulk soil solutions compared with soil withou...
A novel biocompatible and biodegradable drug-delivery nanoparticle (NP) has been developed to minimize the severe side effects of the poorly water-soluble anticancer drug paclitaxel (PTX) for clinical use. PTX was loaded into the hydrophobic cavity of a hydrophilic cyclodextrin derivative, heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), using an aqueous solution-stirring method followed by...
Synthesis and characterization of Cd-TiO2/PEG/FA nanocomposite as a biomaterial is the main aim of this research. Cd-doped TiO2 nanoparticles (NPs) were synthesized by solvothermal assisted sol-gel method. Then, polyethylene glycol (PEG) was added to the as-synthesized NPs in order to modify their surface and to prevent agglomeration. In the next step, folic acid (FA) was conjugated to Cd-TiO2/...
Carboxymethyl-β-cyclodextrin (CMβ-CD)-modified glycol chitosan (GCS) nanoparticles (GCS-CMβ-CD NPs) were synthesized, and their pH-sensitive drug-release properties were investigated. GCS-CMβ-CD NPs could encapsulate doxorubicin hydrochloride (DOX), and the encapsulation efficiency and loading capacity increased with the amount of CMβ-CD. Drug-release studies indicate that DOX released was grea...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید