نتایج جستجو برای: The Stone-Cech compactification
تعداد نتایج: 16058814 فیلتر نتایج به سال:
In this paper, the concept of soft ultrafilters is introduced and some of the related structures such as soft Stone-Cech compactification, principal soft ultrafilters and basis for its topology are studied.
Introduction. In 1937 E. Čech and M.H. Stone independently introduced the maximal compactification of a completely regular topological space, thereafter called Stone-Čech compactification [8, 18]. In the introduction of [8] the non-constructive character of this result is so described: “it must be emphasized that β(S) [the Stone-Čech compactification of S] may be defined only formally (not cons...
it is well known that every (real or complex) normed linear space $l$ is isometrically embeddable into $c(x)$ for some compact hausdorff space $x$. here $x$ is the closed unit ball of $l^*$ (the set of all continuous scalar-valued linear mappings on $l$) endowed with the weak$^*$ topology, which is compact by the banach--alaoglu theorem. we prove that the compact hausdorff space $x$ can ...
O. Wyler [Notices Amer. Math. Soc. 15 (1968), 169. Abstract #653-306.] has given a Stone-Cech compactification for limit spaces. However, his is not necessarily an embedding. Here, it is shown that any Hausdorff limit space (X, t) can be embedded as a dense subspace of a compact, Hausdorff, limit space (Xi, ri) with the following property: any continuous function from (X, t) into a compact, Hau...
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
In this note the Stone-Cech compactification is used to produce short proofs of two theorems on the structure of free topological groups. The first is: The free topological group on any Tychonoff space X contains, as a closed subspace, a homeomorphic copy of the product space X". This is a generalization of a result of B. V. S. Thomas. The second theorem proved is C. Joiner's, Fundamental Lemma.
The Stone-Cech compactification of a space X is described by adjoining to X continuous images of the Stone-tech growths of a complementary pair of subspaces of X. The compactification of an example of Potoczny from [P] is described in detail. The Stone-Cech compactification of a completely regular space X is a compact Hausdorff space ßX in which X is dense and C*-embedded, i.e. every bounded re...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید