نتایج جستجو برای: The Stone-Cech compactification

تعداد نتایج: 16058814  

In this paper, the concept of soft ultrafilters is introduced and some of the related structures such as soft Stone-Cech compactification, principal soft ultrafilters and basis for its topology are studied.

Journal: :Advances in Mathematics 1976

Journal: :J. Symb. Log. 2010
Giovanni Curi

Introduction. In 1937 E. Čech and M.H. Stone independently introduced the maximal compactification of a completely regular topological space, thereafter called Stone-Čech compactification [8, 18]. In the introduction of [8] the non-constructive character of this result is so described: “it must be emphasized that β(S) [the Stone-Čech compactification of S] may be defined only formally (not cons...

Journal: :bulletin of the iranian mathematical society 0
m. fakhar department of mathematics‎, ‎university of isfahan‎, ‎isfahan 81745--163‎, ‎iran‎, ‎and‎, ‎school of mathematics‎, ‎institute for research in fundamental sciences (ipm)‎, ‎p.o‎. ‎box: ‎19395--5746‎, ‎tehran‎, ‎iran. m. r. koushesh department of mathematical sciences‎, ‎isfahan university of technology‎, ‎isfahan 84156--83111‎, ‎iran‎, ‎and‎, ‎school of mathematics‎, ‎institute for research in fundamental sciences (ipm)‎, ‎p.o‎. ‎box‎: ‎19395--5746‎, ‎tehran‎, ‎iran. m. raoofi department of mathematical sciences‎, ‎isfahan university of technology‎, ‎isfahan 84156--83111‎, ‎iran.

‎it is well known that every (real or complex) normed linear space $l$ is isometrically embeddable into $c(x)$ for some compact hausdorff space $x$‎. ‎here $x$ is the closed unit ball of $l^*$ (the set of all continuous scalar-valued linear mappings on $l$) endowed with the weak$^*$ topology‎, ‎which is compact by the banach--alaoglu theorem‎. ‎we prove that the compact hausdorff space $x$ can ...

2010
G. D. RICHARDSON

O. Wyler [Notices Amer. Math. Soc. 15 (1968), 169. Abstract #653-306.] has given a Stone-Cech compactification for limit spaces. However, his is not necessarily an embedding. Here, it is shown that any Hausdorff limit space (X, t) can be embedded as a dense subspace of a compact, Hausdorff, limit space (Xi, ri) with the following property: any continuous function from (X, t) into a compact, Hau...

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

2010
J. P. L. HARDY SIDNEY A. MORRIS H. B. THOMPSON Kelley

In this note the Stone-Cech compactification is used to produce short proofs of two theorems on the structure of free topological groups. The first is: The free topological group on any Tychonoff space X contains, as a closed subspace, a homeomorphic copy of the product space X". This is a generalization of a result of B. V. S. Thomas. The second theorem proved is C. Joiner's, Fundamental Lemma.

Journal: :Transactions of the American Mathematical Society 2003

2010
R. C. WALKER

The Stone-Cech compactification of a space X is described by adjoining to X continuous images of the Stone-tech growths of a complementary pair of subspaces of X. The compactification of an example of Potoczny from [P] is described in detail. The Stone-Cech compactification of a completely regular space X is a compact Hausdorff space ßX in which X is dense and C*-embedded, i.e. every bounded re...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید