نتایج جستجو برای: T-maximal submodule
تعداد نتایج: 784096 فیلتر نتایج به سال:
let $r$ be an arbitrary ring and $t$ be a submodule of an $r$-module $m$. a submodule $n$ of $m$ is called $t$-small in $m$ provided for each submodule $x$ of $m$, $tsubseteq x+n$ implies that $tsubseteq x$. we study this mentioned notion which is a generalization of the small submodules and we obtain some related results.
Let $R$ be an arbitrary ring and $T$ be a submodule of an $R$-module $M$. A submodule $N$ of $M$ is called $T$-small in $M$ provided for each submodule $X$ of $M$, $Tsubseteq X+N$ implies that $Tsubseteq X$. We study this mentioned notion which is a generalization of the small submodules and we obtain some related results.
An R-module A is called GF-regular if, for each a ∈ A and r ∈ R, there exist t ∈ R and a positive integer n such that r(n)tr(n)a = r(n)a. We proved that each unitary R-module A contains a unique maximal GF-regular submodule, which we denoted by M GF(A). Furthermore, the radical properties of A are investigated; we proved that if A is an R-module and K is a submodule of A, then MGF(K) = K∩M GF(A...
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. A proper submodule $P$ of $M$ is called strongly prime submodule if $(P + Rx : M)ysubseteq P$ for $x, yin M$, implies that $xin P$ or $yin P$. In this paper, we study more properties of strongly prime submodules. It is shown that a finitely generated $R$-module $M$ is Artinian if and only if $M$ is Noetherian and every st...
let $r$ be a commutative ring with identity and let $m$ be an $r$-module. a proper submodule $p$ of $m$ is called strongly prime submodule if $(p + rx : m)ysubseteq p$ for $x, yin m$, implies that $xin p$ or $yin p$. in this paper, we study more properties of strongly prime submodules. it is shown that a finitely generated $r$-module $m$ is artinian if and only if $m$ is noetherian and every st...
we show that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. as aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. this generalizes and simplifies a result of dung and smith. as another consequen...
A finitely generated $R$-module is said to be a module of type ($F_r$) if its $(r-1)$-th Fitting ideal is the zero ideal and its $r$-th Fitting ideal is a regular ideal. Let $R$ be a commutative ring and $N$ be a submodule of $R^n$ which is generated by columns of a matrix $A=(a_{ij})$ with $a_{ij}in R$ for all $1leq ileq n$, $jin Lambda$, where $Lambda $ is a (possibly infinite) index set. ...
let $m_r$ be a module with $s=end(m_r)$. we call a submodule $k$ of $m_r$ annihilator-small if $k+t=m$, $t$ a submodule of $m_r$, implies that $ell_s(t)=0$, where $ell_s$ indicates the left annihilator of $t$ over $s$. the sum $a_r(m)$ of all such submodules of $m_r$ contains the jacobson radical $rad(m)$ and the left singular submodule $z_s(m)$. if $m_r$ is cyclic, then $a_r(m)$ is the unique ...
A new and conceptually simple procedure is derived for the computation of the maximal reachability submodule of a given submodule of the state space of a linear discrete time system over a Noethenian ring R. The procedure is effective if R is effective and if kernels and intersections can be computed. The procedure is compared with a rather different procedure by Assan e.a. published recently.
We show that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of Dung and Smith. As another consequen...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید