نتایج جستجو برای: Strongly nil-clean matrix
تعداد نتایج: 608857 فیلتر نتایج به سال:
In this paper we characterize all $2times 2$ idempotent and nilpotent matrices over an integral domain and then we characterize all $2times 2$ strongly nil-clean matrices over a PID. Also, we determine when a $2times 2$ matrix over a UFD is nil-clean.
The classes of clean and nil-clean rings are closed with respect standard constructions as direct products and (triangular) matrix rings, cf. [12] resp. [4], while the classes of weakly (nil-)clean rings are not closed under these constructions. Moreover, while all matrix rings over fields are clean, [12] when we consider nil-clean rings there are strongly restrictions: if a matrix ring over a ...
We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings, then $R/J(R)$ is nil-clean. In particular, under certain additional circumstances, $R$ is also nil-clean. These results somewhat improves on achievements due to Diesl in J. Algebra (2013) and to Koc{s}an-Wang-Zhou in J. Pure Appl. Algebra (2016). ...
An element is known a strongly nil* clean if a=e1 - e1e2 + n , where e1,e2 are idempotents and nilpotent, that commute with one another. ideal I of ring R called each element. We investigate some its fundamental features, as well relationship to the nil ideal.
a ring $r$ is a strongly clean ring if every element in $r$ is the sum of an idempotent and a unit that commutate. we construct some classes of strongly clean rings which have stable range one. it is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Furt...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید