نتایج جستجو برای: Sonochemistry
تعداد نتایج: 232 فیلتر نتایج به سال:
Recent applications of ultrasound to the production of nanostructured materials are reviewed. Sonochemistry permits the production of novel materials or provides a route to known materials without the need for high bulk temperatures, pressures, or long reaction times. Both chemical and physical phenomena associated with high-intensity ultrasound are responsible for the production or modificatio...
High intensity ultrasound can be used for the production of novel materials and provides an unusual route to known materials without bulk high temperatures, high pressures, or long reaction times. Several phenomena are responsible for sonochemistry and specifically the production or modification of nanomaterials during ultrasonic irradiation. The most notable effects are consequences of acousti...
Cocrystals are multicomponent solids with organic molecules assembled in combination to form a crystalline solid with properties different than the individual components. A cocrystal typically consists of a target molecule crystallized with a second molecule, or cocrystal former, employed to influence properties of the target (e.g. solubility). The conformer interacts with the target via interm...
One of the reasons for the huge interest in nanomaterials originated because of the prohibitive price that commercial companies have to pay for introducing new materials into the market. Nanotechnology enables these companies to obtain new properties using old and recognized materials by just reducing their particle size. For these known materials no government approval has to be obtained. Thus...
Sonochemistry, i.e., the application of mechanical energy in the form of sound waves, has recently been recognised for its similarity to mechanochemistry and is now included under the umbrella term of mechanochemistry. Typically, due to the hypothesised cavitation mechanism, a liquid medium is considered as a necessity for a process to take place as a result of ultrasonic irradiation. In view o...
1. Introduction One of the most important recent applications of sonochemistry has been to the synthesis and modification of inorganic materials [1-5]. In liquids irradiated with high intensity ultrasound, acoustic cavitation drives bubble collapse producing intense local heating, high pressures, and very short lifetimes; these transient, localized hot spots drive high energy chemical reactions...
One way to focus the diffuse energy of a sound field in a liquid is by acoustically driving bubbles into nonlinear oscillation. A rapid and nearly adiabatic bubble collapse heats up the bubble interior and produces intense concentration of energy that is able to emit light (sonoluminescence) and to trigger chemical reactions (sonochemistry). Such phenomena have been extensively studied in bulk ...
Chemical reactions may experience numerous and varied effects under the influence of ultrasound. This soft radiation, often viewed as a lab trick, induces and improves both physical and chemical transformations by means of efficient agitation, dissolution, mass and heat transfers, and reagents sonolysis, which all arise from the cavitational collapse. An empirical rationale that distinguishes b...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید