نتایج جستجو برای: Semidefinite optimization
تعداد نتایج: 321432 فیلتر نتایج به سال:
in this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. first we introduce a parametric equivalent of the problem. then a bisection and a generalized newton-based method algorithms are presented to solve it. in order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
Semidefinite optimization problems are an expressive family of convex optimization problems that can be solved efficiently. We develop semidefinite optimization-based formulations and approximations for a number of families of optimization problems, including problems arising in spacecraft attitude estimation and in learning tree-structured statistical models. We construct explicit exact reform...
In this paper we consider a fractional optimization problem that minimizes the ratio of two quadratic functions subject to a strictly convex quadratic constraint. First using the extension of Charnes-Cooper transformation, an equivalent homogenized quadratic reformulation of the problem is given. Then we show that under certain assumptions, it can be solved to global optimality using semidefini...
Chordal graphs play a central role in techniques for exploiting sparsity in large semidefinite optimization problems and in related convex optimization problems involving sparse positive semidefinite matrices. Chordal graph properties are also fundamental to several classical results in combinatorial optimization, linear algebra, statistics, signal processing, machine learning, and nonlinear op...
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
Semidefinite optimization, commonly referred to as semidefinite programming, has been a remarkably active area of research in optimization during the last decade. For combinatorial problems in particular, semidefinite programming has had a truly significant impact. This paper surveys some of the results obtained in the application of semidefinite programming to satisfiability and maximum-satisf...
Examples of weakly infeasible semidefinite programs are useful to test whether semidefinite solvers can detect infeasibility. However, finding non trivial such examples is notoriously difficult. This note shows how to use Lasserre’s semidefinite programming relaxations for polynomial optimization in order to generate examples of weakly infeasible semidefinite programs. Such examples could be us...
We survey some recent developments in the area of semidefinite optimization applied to integer programming. After recalling some generic modeling techniques to obtain semidefinite relaxations for NP-hard problems, we look at the theoretical power of semidefinite optimization in the context of the Max-Cut and the Coloring Problem. In the second part, we consider algorithmic questions related to ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید