نتایج جستجو برای: Semi-dualizing module
تعداد نتایج: 207461 فیلتر نتایج به سال:
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
A semi-dualizing module over a commutative noetherian ringA is a finitely generated module C with RHomA(C,C) ≃ A in the derived category D(A). We show how each such module gives rise to three new homological dimensions which we call C–Gorenstein projective, C–Gorenstein injective, and C–Gorenstein flat dimension, and investigate the properties of these dimensions.
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
This paper develops a duality theory for connected cochain DG algebras, with particular emphasis on the non-commutative aspects. One of the main items is a dualizing DG module which induces a duality between the derived categories of DG left-modules and DG right-modules with finitely generated cohomology. As an application, it is proved that if the canonical module A/A has a semi-free resolutio...
We consider rings admitting a Matlis dualizing module E. We argue that if R admits two such dualizing modules, then a module is reflexive with respect to one if and only if it is reflexive with respect to the other. Using this fact we argue that the number (whether finite or infinite) of distinct dualizing modules equals the number of distinct invertible (R,R)-bimodules. We show by example that...
In 1966 [1], Auslander introduced a class of finitely generated modules having a certain complete resolution by projective modules. Then using these modules, he defined the G-dimension (G ostensibly for Gorenstein) of finitely generated modules. It seems appropriate then to call the modules of G-dimension 0 the Gorenstein projective modules. In [4], Gorenstein projective modules (whether finite...
Gross and Hopkins have proved that in chromatic stable homotopy, Spanier-Whitehead duality nearly coincides with Brown-Comenetz duality. Our goal is to give a conceptual interpretation for this phenomenon in terms of the Gorenstein condition for maps of ring spectra in the sense of [5] We describe a general notion of Brown-Comenetz dualizing module for a map of ring spectra and show that in thi...
let $r$ be a ring and $m$ a right $r$-module with $s=end_r(m)$. a module $m$ is called semi-projective if for any epimorphism $f:mrightarrow n$, where $n$ is a submodule of $m$, and for any homomorphism $g: mrightarrow n$, there exists $h:mrightarrow m$ such that $fh=g$. in this paper, we study sgq-projective and$pi$-semi-projective modules as two generalizations of semi-projective modules. a m...
In this paper we use "ring changed'' Gorenstein homologicaldimensions to define Cohen-Macaulay injective, projective and flatdimensions. For doing this we use the amalgamated duplication of thebase ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید