نتایج جستجو برای: Seidel signless Laplacian eigenvalues

تعداد نتایج: 31915  

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

2013
HANYUAN DENG HE HUANG

A signless Laplacian eigenvalue of a graph G is called a main signless Laplacian eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this paper, some necessary and sufficient conditions for a graph with one main signless Laplacian eigenvalue or two main signless Laplacian eigenvalues are given. And the trees and unicyclic graphs with exactly two main signless L...

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

Fatemeh Taghvaee Gholam Hossein Fath-Tabar,

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

2014
Jinshan Xie Liqun Qi

In this paper, some inequality relations between the Laplacian/signless Laplacian H-eigenvalues and the clique/coclique numbers of uniform hypergraphs are presented. For a connected uniform hypergraph, some tight lower bounds on the largest Laplacian H+-eigenvalue and signless Laplacian H-eigenvalue related to the clique/coclique numbers are given. And some upper and lower bounds on the clique/...

Journal: :algebraic structures and their applications 2014
fatemeh taghvaee gholam hossein fath-tabar

let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $a(g)$ the adjacency matrix of $g$. the  signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of  graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

2017
Zhenzhen Lou Qiongxiang Huang Xueyi Huang ZHENZHEN LOU XUEYI HUANG

A connected graph is called Q-controllable if its signless Laplacian eigenvalues are mutually distinct and main. Two graphs G and H are said to be Q-cospectral if they share the same signless Laplacian spectrum. In this paper, infinite families of Q-controllable graphs are constructed, by using the operator of rooted product introduced by Godsil and McKay. In the process, infinitely many non-is...

2014
LIQUN QI

We propose a simple and natural definition for the Laplacian and the signless Laplacian tensors of a uniform hypergraph. We study their H-eigenvalues, i.e., H-eigenvalues with nonnegative H-eigenvectors, and H-eigenvalues, i.e., H-eigenvalues with positive H-eigenvectors. We show that each of the Laplacian tensor, the signless Laplacian tensor, and the adjacency tensor has at most one H-eigenva...

2011
Sheng-Lung Peng Yu-Wei Tsay

The spectrum of a matrix M is the multiset that contains all the eigenvalues of M. If M is a matrix obtained from a graph G, then the spectrum of M is also called the graph spectrum of G. If two graphs has the same spectrum, then they are cospectral (or isospectral) graphs. In this paper, we compare four spectra of matrices to examine their accuracy in protein structural comparison. These four ...

2010
Slobodan K. Simić Zoran Stanić

Let G be a simple graph with adjacency matrix A (= AG). The eigenvalues and the spectrum of A are also called the eigenvalues and the spectrum of G, respectively. If we consider a matrix Q = D + A instead of A, where D is the diagonal matrix of vertex–degrees (in G), we get the signless Laplacian eigenvalues and the signless Laplacian spectrum, respectively. For short, the signless Laplacian ei...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید