نتایج جستجو برای: Seidel Laplacian eigenvalues
تعداد نتایج: 31896 فیلتر نتایج به سال:
Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
The spectrum of a matrix M is the multiset that contains all the eigenvalues of M. If M is a matrix obtained from a graph G, then the spectrum of M is also called the graph spectrum of G. If two graphs has the same spectrum, then they are cospectral (or isospectral) graphs. In this paper, we compare four spectra of matrices to examine their accuracy in protein structural comparison. These four ...
let $g$ be a graph without an isolated vertex, the normalized laplacian matrix $tilde{mathcal{l}}(g)$is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$, where $mathcal{d}$ is a diagonal matrix whose entries are degree of vertices of $g$. the eigenvalues of$tilde{mathcal{l}}(g)$ are called as the normalized laplacian ...
for a simple digraph $g$ of order $n$ with vertex set${v_1,v_2,ldots, v_n}$, let $d_i^+$ and $d_i^-$ denote theout-degree and in-degree of a vertex $v_i$ in $g$, respectively. let$d^+(g)=diag(d_1^+,d_2^+,ldots,d_n^+)$ and$d^-(g)=diag(d_1^-,d_2^-,ldots,d_n^-)$. in this paper we introduce$widetilde{sl}(g)=widetilde{d}(g)-s(g)$ to be a new kind of skewlaplacian matrix of $g$, where $widetilde{d}(g...
The universal adjacency matrix U of a graph Γ, with A, is linear combination the diagonal D vertex degrees, identity I, and all-1 J real coefficients, that is, U=c1A+c2D+c3I+c4J, ci∈R c1≠0. Thus, in particular cases, may be matrix, Laplacian, signless Seidel matrix. In this paper, we develop method for determining spectra bases all corresponding eigenspaces arbitrary lifts graphs (regular or no...
a concept related to the spectrum of a graph is that of energy. the energy e(g) of a graph g is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of g . the laplacian energy of a graph g is equal to the sum of distances of the laplacian eigenvalues of g and the average degree d(g) of g. in this paper we introduce the concept of laplacian energy of fuzzy graphs. ...
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
for a simple connected graph $g$ with $n$-vertices having laplacian eigenvalues $mu_1$, $mu_2$, $dots$, $mu_{n-1}$, $mu_n=0$, and signless laplacian eigenvalues $q_1, q_2,dots, q_n$, the laplacian-energy-like invariant($lel$) and the incidence energy ($ie$) of a graph $g$ are respectively defined as $lel(g)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $ie(g)=sum_{i=1}^{n}sqrt{q_i}$. in th...
Among all trivalent graphs on n vertices, let Gn be one with the smallest possible eigenvalue gap. (The eigenvalue gap is the difference between the two largest eigenvalues of the adjacency matrix; for regular graphs, it equals the second smallest eigenvalue of the Laplacian matrix.) We show that Gn is unique for each n and has maximum diameter. This extends work of Guiduli and solves a conject...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید