نتایج جستجو برای: SREBP1c
تعداد نتایج: 216 فیلتر نتایج به سال:
SREBP1c (sterol regulatory element-binding protein 1c) is a metabolic-syndrome-associated transcription factor that controls fatty acid biosynthesis under glucose/insulin stimulation. Oxidative stress increases lipid accumulation, which promotes the generation of reactive oxygen species (ROS). However, we know little about the role of oxidative stress in fatty acid biosynthesis. To clarify the ...
HCBP6 upregulates human SREBP1c expression by binding to C/EBPβ-binding site in the SREBP1c promoter
Sterol regulatory element-binding protein-1c (SREBP1c) plays an important role in triglyceride (TG) homeostasis. Although our previous study showed that hepatitis C virus core-binding protein 6 (HCBP6) regulates SREBP1c expression to maintain intracellular TG homeostasis, the mechanism underlying this regulation is unclear. In the present study, we found that HCBP6 increased intracellular TG le...
UNLABELLED Sterol regulatory element binding protein1c (SREBP1c) is a key transcription factor for de novo lipogenesis during the postprandial state. During nutritional deprivation, hepatic SREBP1c is rapidly suppressed by fasting signals to prevent lipogenic pathways. However, the molecular mechanisms that control SREBP1c turnover in response to fasting status are not thoroughly understood. To...
Fatty acid synthase (FAS), a nutritionally regulated lipogenic enzyme, is transcriptionally controlled by ADD1/SREBP1c (adipocyte determination and differentiation 1/sterol regulatory element-binding protein 1c), through insulin-mediated stimulation of ADD1/SREBP1c expression. Progesterone exerts lipogenic effects on adipocytes, and FAS is highly induced in breast tumor cell lines upon progeste...
SREBP1c is a key lipogenic transcription factor activated by insulin in the postprandial state. Although SREBP1c appears to be involved in suppression of hepatic gluconeogenesis, the molecular mechanism is not thoroughly understood. Here we show that CRY1 is activated by insulin-induced SREBP1c and decreases hepatic gluconeogenesis through FOXO1 degradation, at least, at specific circadian time...
The transcription factor SREBP1c (sterol-regulatory-element-binding protein 1c) is highly expressed in adipose tissue and plays a central role in several aspects of adipocyte development including the induction of PPARgamma (peroxisome-proliferator-activated receptor gamma), the generation of an endogenous PPARgamma ligand and the expression of several genes critical for lipid biosynthesis. Des...
Identification of Combined Genetic Determinants of Liver Stiffness within the SREBP1c-PNPLA3 Pathway
The common PNPLA3 (adiponutrin) variant, p.I148M, was identified as a genetic determinant of liver fibrosis. Since the expression of PNPLA3 is induced by sterol regulatory element binding protein 1c (SREBP1c), we investigate two common SREBP1c variants (rs2297508 and rs11868035) for their association with liver stiffness. In 899 individuals (aged 17-83 years, 547 males) with chronic liver disea...
Adipocyte determination and differentiation dependent factor 1 (ADD1)/sterol regulatory element binding protein isoform (SREBP1c) is a key transcription factor in fatty acid metabolism and insulin- dependent gene expression. Although its transcriptional and post-translational regulation has been extensively studied, its regulation by interacting proteins is not well understood. To identify cell...
The transcription factor sterol regulatory element-binding protein 1c (SREBP1c) plays an important role in the regulation of fatty acid metabolism in the liver. Although the importance of phosphoinositide 3-kinase in the regulation of SREBP1c expression is widely accepted, the role of mammalian target of rapamycin (mTOR) in such regulation has remained unclear. We have now shown that the insuli...
Acetyl-CoA carboxylase I (ACCI) is a key lipogenic enzyme whose induction in islet beta-cells may contribute to glucolipotoxicity. Here, we provide evidence that enhanced insulin release plays an important role in the activation of this gene by glucose. Glucose (30 vs. 3 mmol/l) increased ACCI mRNA levels approximately 4-fold and stimulated ACCI (pII) promoter activity >30-fold in MIN6 cells. T...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید