نتایج جستجو برای: RyR2
تعداد نتایج: 1011 فیلتر نتایج به سال:
RATIONALE Calmodulin (CaM) associates with cardiac ryanodine receptor type-2 (RyR2) as an important regulator. Defective CaM-RyR2 interaction may occur in heart failure, cardiac hypertrophy, and catecholaminergic polymorphic ventricular tachycardia. However, the in situ binding properties for CaM-RyR2 are unknown. OBJECTIVE We sought to measure the in situ binding affinity and kinetics for Ca...
RATIONALE One hypothesis for elevated Ca(2+) leak through cardiac ryanodine receptors (ryanodine receptor 2 [RyR2]) in heart failure is interdomain unzipping that can enhance aberrant channel activation. A peptide (domain peptide corresponding to RyR2 residues 2460-2495 [DPc10]) corresponding to RyR2 central domain residues 2460-2495 recapitulates this arrhythmogenic RyR2 leakiness by unzipping...
Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in heart failure (HF) and arrhythmias. Altered RyR2 domain-domain interaction (domain unzipping) and calmodulin (CaM) binding affinity are allosterically coupled indices of RyR2 conformation. In HF RyR2 exhibits reduced CaM binding, increased domain unzipping and greater SR Ca leak, and dantrolene can reverse these...
Disease-causative variants in the RYR2-encoded ryanodine receptor (RyR2)/calcium release channel (CRC) result a spectrum of clinical phenotypes, most notably catecholaminergic polymorphic ventricular tachycardia (CPVT) and CRC deficiency syndrome (CRCDS). In addition, ultra-rare RYR2 genetic are observed small number unexplained sudden cardiac arrest (SCA) death (SCD) cases. To determine phenot...
Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor/calcium release channel (RyR2) is thought to play a role in heart failure (HF) progression. Inhibition of this leak is an emerging therapeutic strategy. To explore the role of chronic PKA phosphorylation of RyR2 in HF pathogenesis and treatment, we generated a knockin mouse with aspartic acid replacing serine 280...
The cardiac Ca(2+) release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study...
Naturally occurring mutations in the cardiac ryanodine receptor (RyR2) have been linked to certain types of cardiac arrhythmias and sudden death. Two mutation hotspots that lie in the N-terminal and central regions of RyR2 are predicted to interact with one another and to form an important channel regulator switch. To monitor the conformational dynamics involving these regions, we generated a f...
RATIONALE FK506-binding proteins FKBP12.6 and FKBP12 are associated with cardiac ryanodine receptors (RyR2), and cAMP-dependent protein kinase A (PKA)-dependent phosphorylation of RyR2 was proposed to interrupt FKBP12.6-RyR2 association and activate RyR2. However, the function of FKBP12.6/12 and role of PKA phosphorylation in cardiac myocytes are controversial. OBJECTIVE To directly measure i...
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disease characterized by life threatening arrhythmias and mutations in the gene encoding the ryanodine receptor (RyR2). Disagreement exists on whether (1) RyR2 mutations induce abnormal calcium transients in the absence of adrenergic stimulation; (2) decreased affinity of mutant RyR2 for FKBP12.6 causes CPVT; (3) K201 ...
AIM To explore the physiological consequences of the ryanodine receptor (RyR2)-P2328S mutation associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). METHODS We generated heterozygotic (RyR2 p/s) and homozygotic (RyR2 s/s) transgenic mice and studied Ca2+ signals from regularly stimulated, Fluo-3-loaded, cardiac myocytes. Results were compared with monophasic action pot...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید