نتایج جستجو برای: Roman
تعداد نتایج: 13951 فیلتر نتایج به سال:
henri-alban fournier (dit alain-fournier) est né le 3 octobre 1886 à la chapelle- dangillon dans le cher. il a passé son enfance en sologne et en bas-berry où ses parents étaient instituteurs. il a poursuivi des études secondaires au lycée lakanal, à sceaux, près de paris, où il a préparé sans succès le concours d’entrée à l’ecole normale supérieure. mobilisé dès la déclaration de guerre, en ao...
a {em roman dominating function} on a graph $g$ is a function$f:v(g)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}a {em restrained roman dominating}function} $f$ is a {color{blue} roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} the wei...
etant donné le rapport réciproque entre la société et la littérature, et vu la dominance extraordinaire du roman, à l'état actuel, sur les autres expressions littéraires, on ne peut s'empêcher de s'interroger sur la cause et l'origine de la primauté du genre romanesque. certes, le roman ne date pas du xixe siècle; il est l'un des héritages des siècles précédents. néanmoins, son déploiement est ...
a {em roman dominating function} on a graph $g = (v ,e)$ is a function $f : vlongrightarrow {0, 1, 2}$ satisfying the condition that every vertex $v$ for which $f (v) = 0$ is adjacent to at least one vertex $u$ for which $f (u) = 2$. the {em weight} of a roman dominating function is the value $w(f)=sum_{vin v}f(v)$. the roman domination number of a graph $g$, denoted by $gamma_r(g)$, equals the...
We present a survey of con uence properties of (acyclic) term graph rewriting. Results and counterexamples are given for di erent kinds of term graph rewriting: besides plain applications of rewrite rules, extensions with the operations of collapsing and copying, and with both operations together are considered. Collapsing and copying together constitute bisimilarity of term graphs. We establis...
The Roman imperial monarchy is generally studied from the vantage point of ancient Roman history: the “Roman emperor” is viewed and analyzed as an element of the Roman world. This conventional approach fails to place this institution in a broader comparative context, that of monarchical rulers across world history. Systematic comparison opens up new perspectives and is indispensable in identify...
A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of f is w(f) = ∑ v∈V f(v). The Roman domination number is the minimum weight of an RDF in G. It is known that for every graph G, the Roman domination number of G is bounded above...
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. For a given graph,...
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. The Roman reinforc...
A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number of G, γR(G), is the minimum weight of a Roman dominating function on G. In this paper, we...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید