نتایج جستجو برای: Ricci soliton

تعداد نتایج: 15590  

2009
MICHAEL JABLONSKI

The purpose of this paper is to introduce the Ricci Yang-Mills soliton equations on nilpotent Lie groups. In the 2-step nilpotent setting, we show that these equations are strictly weaker than the Ricci soliton equations. Using techniques from Geometric Invariant Theory, we develop a procedure to build many different kinds of Ricci Yang-Mills solitons. We finish this note by producing examples ...

2008
LUCA FABRIZIO DI CERBO

where λ is the soliton constant. In [2], Lauret proves the existence of many left invariant Ricci solitons on nilpotent Lie groups. The first explicit construction of Lauret solitons has been obtained by Baird and Danielo in [4]. In particular they show that the soliton structure on Nil is of nongradient type. Remarkably this is the first example of nongradient Ricci soliton. In [5], it is prov...

2009
Kensuke Onda

The three-dimensional Heisenberg group H3 has three left-invariant Lorentz metrics g1 , g2 and g3 as in [R92] . They are not isometric each other. In this paper, we characterize the left-invariant Lorentzian metric g1 as a Lorentz Ricci soliton. This Ricci soliton g1 is a shrinking non-gradient Ricci soliton. Likewise we prove that the isometry group of flat Euclid plane E(2) has Lorentz Ricci ...

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

Journal: :bulletin of the iranian mathematical society 2014
b. bidabad m. yarahmadi

‎the notion of quasi-einstein metric in physics is equivalent to the notion of ricci soliton in riemannian spaces‎. ‎quasi-einstein metrics serve also as solution to the ricci flow equation‎. ‎here‎, ‎the riemannian metric is replaced by a hessian matrix derived from a finsler structure and a quasi-einstein finsler metric is defined‎. ‎in compact case‎, ‎it is proved that the quasi-einstein met...

2007
Xiuxiong Chen Bing Wang

We show the properties of the blowup limits of Kähler Ricci flow solutions on Fano surfaces if Riemannian curvature is unbounded. As an application, on every toric Fano surface, we prove that Kähler Ricci flow converges to a Kähler Ricci soliton metric if the initial metric has toric symmetry. Therefore we give a new Ricci flow proof of existence of Kähler Ricci soliton metrics on toric surfaces.

2007
LUCA FABRIZIO DI CERBO

We discuss the geometry of homogeneous Ricci solitons. After showing the nonexistence of compact homogeneous and noncompact steady homogeneous solitons, we concentrate on the study of left invariant Ricci solitons. We show that, in the unimodular case, the Ricci soliton equation does not admit solutions in the set of left invariant vector fields. We prove that a left invariant soliton of gradie...

2004
ALBERT CHAU Albert Chau

Applying a well known result for attracting fixed points of biholomorphisms [4, 6], we observe that one immediately obtains the following result: if (Mn, g) is a complete non-compact gradient Kähler-Ricci soliton which is either steady with positive Ricci curvature so that the scalar curvature attains its maximum at some point, or expanding with non-negative Ricci curvature, then M is biholomor...

2008
Xiaohua Zhu

In this note, we prove that on an n-dimensional compact toric manifold with positive first Chern class, the Kähler-Ricci flow with any initial (S)-invariant Kähler metric converges to a Kähler-Ricci soliton. In particular, we give another proof for the existence of Kähler-Ricci solitons on a compact toric manifold with positive first Chern class by using the Kähler-Ricci flow. 0. Introduction. ...

2002
Xiaohua Zhu XIAOHUA ZHU

It is well-known that the αG(M)-invariant introduced by Tian plays an important role in the study of the existence of Kähler-Einstein metrics on complex manifolds with positive first Chern class ([T1], [T2], [TY]). Based on the estimate of αG(M)-invariant, Tian in 1990 proved that any complex surface with c1(M) > 0 always admits a Kähler-Einstein metric except in two cases CP2#1CP2 and CP2#2CP2...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید