نتایج جستجو برای: Real quaternions
تعداد نتایج: 530991 فیلتر نتایج به سال:
an involution or anti-involution is a self-inverse linear mapping. in this paper, we will present two real quaternion matrices, one corresponding to a real quaternion involution and one corresponding to a real quaternion anti-involution. moreover, properties and geometrical meanings of these matrices will be given as reflections in r^3.
in this paper, lie group structure and lie algebra structure of unit complex 3-sphere are studied. in order to do this, adjoint representations of unit biquaternions (complexified quaternions) are obtained. also, a correspondence between the elements of and the special complex unitary matrices (2) is given by expressing biquaternions as 2-dimensional bicomplex numbers . the relat...
An involution or anti-involution is a self-inverse linear mapping. In this paper, we will present two real quaternion matrices, one corresponding to a real quaternion involution and one corresponding to a real quaternion anti-involution. Moreover, properties and geometrical meanings of these matrices will be given as reflections in R^3.
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
Figure 1: A comparison of dual quaternion skinning with previous methods: log-matrix blending Cordier and Magnenat-Thalmann 2005 and. Dual quaternions a generalization of regular quaternions invented. Techdocslcoterrors.pdf.Figure 1: A comparison of dual quaternion skinning with previous methods: log-matrix. Closed-form approximation, based on dual quaternions a general.Skinning with Quaternion...
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
In this paper, real matrix representations of split quaternions are examined in terms of the casual character of quaternion. Then, we give De-Moivre’ s formula for real matrices of timelike and spacelike split quaternions, separately. Finally, we state the Euler theorem for real matrices of pure split quaternions.
Though Combination of Quaternions and matrix has been a popular tool in skeletal animation for more than 20 years, classical quaternions are restricted to the representation of rotations. In skeletal animation and many other applications of 3D computer graphics, we actually deal with rigid transformation including both rotation and translation. Dual quaternions represent rigid transformations n...
Quaternions 1.1 Quaternions are a class of hypercomplex numbers with four real components [1]. By analogy with the complex numbers being representable as a sum of real and imaginary parts (z a + bi), quaternions can also be written as a linear combination: q a + bi + cj + dk, (1) where 1, i, j, k make a group and satisfy the noncommutative rules: i2 j2 k2 -1, ij ji k, jk -kj ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید