نتایج جستجو برای: Quasi-dihedral $2$-group
تعداد نتایج: 3275829 فیلتر نتایج به سال:
in this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. explicit formulas are givenfor dihedral groups $d_{2n}$, quasi-dihedral groups $qd_{2^n}$, generalized quaternion groups $q_{4n}$ and modular $p$-groups $m_{p^n}$.
In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.
in this paper we consider the group algebra $r(c_2times d_infty)$. it is shown that $r(c_2times d_infty)$ can be represented by a $4times 4$ block circulant matrix. it is also shown that $mathcal{u}(mathbb{z}_2(c_2times d_infty))$ is infinitely generated.
in this paper we consider the group algebra $r(c_2times d_infty)$. it is shown that $r(c_2times d_infty)$ can be represented by a $4times 4$ block circulant matrix. it is also shown that $mathcal{u}(mathbb{z}_2(c_2times d_infty))$ is infinitely generated.
a k-nacci sequence in a finite group is a sequence of group elements x0 , x1, x2 ,, xn , forwhich, given an initial (seed) set 0 1 2 1 , , , ,j x x x x , each element is defined by0 1 11 1for ,for .nnn k n k nxx x j n kxx x x n k in this paper, we examine the periods of the k-nacci sequences in miller’s generalization of the polyhedralgroups 2,2 2;q , n,2 2;q , 2, n 2;...
a recursive-circulant $g(n; d)$ is defined to be acirculant graph with $n$ vertices and jumps of powers of $d$.$g(n; d)$ is vertex-transitive, and has some strong hamiltonianproperties. $g(n; d)$ has a recursive structure when $n = cd^m$,$1 leq c < d $ [10]. in this paper, we will find the automorphismgroup of some classes of recursive-circulant graphs. in particular, wewill find that the autom...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید