نتایج جستجو برای: Quasi-Baer ring
تعداد نتایج: 206502 فیلتر نتایج به سال:
A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...
an ideal i of a ring r is called right baer-ideal if there exists an idempotent e 2 r such that r(i) = er. we know that r is quasi-baer if every ideal of r is a right baer-ideal, r is n-generalized right quasi-baer if for each i e r the ideal in is right baer-ideal, and r is right principaly quasi-baer if every principal right ideal of r is a right baer-ideal. therefore the concept of baer idea...
for a fixed positive integer , we say a ring with identity is n-generalized right principally quasi-baer, if for any principal right ideal of , the right annihilator of is generated by an idempotent. this class of rings includes the right principally quasi-baer rings and hence all prime rings. a certain n-generalized principally quasi-baer subring of the matrix ring are studied, and connections...
let r be a ring, be an endomorphism of r and mr be a -rigid module. amodule mr is called quasi-baer if the right annihilator of a principal submodule of r isgenerated by an idempotent. it is shown that an r-module mr is a quasi-baer module if andonly if m[[x]] is a quasi-baer module over the skew power series ring r[[x; ]].
An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer idea...
In [15], Kaplansky introduced Baer rings as rings in which every right (left) annihilator ideal is generated by an idempotent. According to Clark [9], a ring R is called quasi-Baer if the right annihilator of every right ideal is generated (as a right ideal) by an idempotent. Further works on quasi-Baer rings appear in [4, 6, 17]. Recently, Birkenmeier et al. [8] called a ring R to be a right (...
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
A ring R is called a left APP-ring if the left annihilator lR(Ra) is right s-unital as an ideal of R for any element a ∈ R. We consider left APP-property of the skew formal power series ring R[[x;α]] where α is a ring automorphism of R. It is shown that if R is a ring satisfying descending chain condition on right annihilators then R[[x;α]] is left APP if and only if for any sequence (b0, b1, ....
فرض کنیم r حلقه ای یکدار و شرکت پذیر باشد. بنابراین حلقه یک حلقه بئر (متناظراً شبه بئر) نامیده می شود، هرگاه پوچساز چپ هر زیرمجموعه ناتهی(متناظراً هر ایده آل) آن، توسط یک خودتوان تولید شود. در این پایان نامه، مقالات زیر را مورد بررسی و مطالعه قرار گرفته است: yi.z and zhou.y, baer and quasi-baer properties of group rings, journal of the australian mathematical society. 83 (2007), no. 2, 285-296 ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید